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Abstract

In this study, we introduce the pseudospectral methods based on Chebyshev and Legendre polynomials for
the Schrödinger equation of anharmonic oscillator. The method transforms the problem into an unsym-
metric matrix eigenvalue problem which can be symmetrized by using a suitable similarity transformation.
Computation of the zeros of the relevant orthogonal polynomials is also converted into a symmetric matrix
eigenvalue problem. The method is applied to the Scrödinger equation of an anharmonic oscillator of various
types and the numerical results and discussed.
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1. Introduction

One of the most simple looking, but most extensively studied problems in quantum mechanics is the
problem of finding the eigenvalues of the so called anharmonic oscillator. The simplicity of the Schrödinger
equation for a one dimensional anharmonic oscillator does not imply that it can be solved easily. For many
years, numerous studies based on different numerical methods on this problem have been reported [2, 3, 4, 5].

The pseudospecral methods have been proved to be very efficient and powerful for numerical solutions of
both ordinary and partial differential equations. The construction of the pseudospectral methods employs
the Lagrange interpolation with nodes chosen as the zeros of some orthogonal polynomial. As a result, the
relevant boundary or eigenvalue problem for the differential equation is transformed into an unsymmetric
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matrix eigenvalue problem. However, using a suitable similarity transformation, it can be converted into a
symmetric eigenvalue problem [6, 7, 8, 9, 10].

The paper is organized as follows. In the next section, we introduce briefly the general formulation of the
pseudospectral methods. In Section 3, the computation of the zeros of Chebyshev and Legendre polynomials
is derived. The next two sections present the application of Chebyshev and Legendre pseudospectral methods
to the Schrödinger equation of a one dimensional anharmonic oscillator. The numerical results are presented
in Section 6 and conclusion and some remarks are given in Section 7.

2. Formulation of the Pseudospectral Methods

The formulation of the pseudospectral methods is based on the Lagrange interpolating polynomial which
interpolates a function y = f(x) at the nodes (xn, yn) n = 0, 1, . . . , N and has the form

L(x) =
N∑

n=0

`n(x)yn, yn = f(xn), n = 0, . . . , N, (1)

where

`n(x) =

N∏
m=0,m6=n

(x− xm)

N∏
m=0,m6=n

(xn − xm)

. (2)

Using the notation
FN+1(x) = (x− x0) · · · (x− xn) · · · (x− xN ), (3)

and the immediate fact that

F ′N+1(x) =

N∑
k=0

(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xN ),

we can write the polynomials `n(x) in (2) as

`n(x) =


FN+1(x)

(x− xn)F ′N+1(xn)
if x 6= xn

1 if x = xn

. (4)

Since any orthogonal polynomial of degree N has exactly N real and distinct zeros, then it can be written
as

FN (x) = aN (x− x0)(x− x1) · · · (x− xN−1). (5)

Therefore, if we take the function FN+1 in (4) as an orthogonal polynomial then the points x0, . . . , xN will
be the real distinct zeros of this polynomial.

3. Computation of the zeros of orthogonal polynomials

In this section, we discuss the computation of zeros x0, x1, . . . , xN of any orthogonal polynomial FN+1(x).
We employ the three-term recurrence relation of an orthogonal polynomial given in general as [1],

αnFn+1(x) + βnFn(x) + γnFn−1(x) = xFn(x),

for n ∈ N where αn, βn, γn are constants.
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Assuming that F−1(x) ≡ 0, we write this relation for n = 0, 1, . . . , N which leads to a system of the form

β0F0(x) + α0F1(x) = xF0(x),
γ1F0(x) + β1F1(x) + α1F2(x) = xF1(x),

...
...

γNFN−1(x) + βNFN (x) + αNFN+1(x) = xFN (x).

(6)

In matrix form, this system is written as
β0 α0 0 0 · · · 0
γ1 β1 α1 0 · · · 0
0 γ2 β2 α2 · · · 0
...

. . .
. . .

. . .
. . .

...
0 0 0 · · · γN βN




F0(x)
F1(x)
F2(x)

...
FN (x)

 = x


F0(x)
F1(x)
F2(x)

...
FN (x)

− αN


0
0
...
0

FN+1(x)

 .

The requirement FN+1(x) = 0 results in a matrix eigenvalue problem of the form

RF = xF, (7)

where R is the tridiagonal matrix

R =


β0 α0 0 0 · · · 0
γ1 β1 α1 0 · · · 0
0 γ2 β2 α2 · · · 0
...

. . .
. . .

. . .
. . .

...
0 0 0 · · · γN βN

 ,

and F = [F0(x) · · ·F1(x) . . . FN (x)]T . The matrix R is in general unsymmetric. However, it is possible to
use a similarity transformation to transform the unsymmetric eigenvalue problem (7) into a symmetric one.
Indeed, let

G = diag{g0, g1, . . . , gN}, (8)

be a nonsingular diagonal matrix. Define
Y = G−1F.

Then
RGY = RF = xF = xGY,

and hence,
G−1RGY = xG−1GY = xY.

This can be written as
SY = xY,

where S = G−1RG. Clearly the entries of S are computed as

sij =
1

gi
rijgj , i, j = 1, . . . N,

and moreover, S is also tridiagonal, that is,

sij = 0 if j > i+ 1 and j < i− 1.

If we require that S is symmetric, that is,

si+1,i = si,i+1, i = 0, 1, . . . , N − 1,
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then,
g2i γi+1 = g2i+1αi,

which yields

gi+1 = gi

√
γi+1

αi
, i = 0, 1, . . . , N − 1. (9)

From this equation we compute the entries gi of the diagonal matrix G recursively, starting with some
arbitrary g0 6= 0.

3.1. Zeros of Chebyshev polynomials

We denote the Chebyshev polynomials by Tn(x). The zeros of the Chebyshev polynomial TN+1 of degree
N + 1 are known to be [1]

xn = cos

(
π(n+ 1/2)

N + 1

)
, n = 0, 1, . . . , N. (10)

However, using the procedure described above, these zeros can also be obtained as matrix eigenvalues. The
recurrence relation for Chebyshev polynomials is [1]

1

2
Tn−1(x) +

1

2
Tn+1(x) = xTn, n = 1, 2, . . .

and
T1 = xT0,

so that we have α0 = 1, β0 = 0, αn = 1
2 , βn = 0 and γn = 1

2 for n = 1, . . . , N . Then the matrix R in (7) has
the form

R =



0 1 0 0 · · · 0
1/2 0 1/2 0 · · · 0
0 1/2 0 1/2 · · · 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · 0 1/2
0 0 0 · · · 1/2 0


. (11)

The entries of the similarity transformation matrix G are now obtained from (9) as

gi =
1√
2
, i = 1, 2, . . . , N,

starting with g0 = 1. Thus, the zeros of the Chebyshev polynomial TN+1 are obtained as the eigenvalues of
the symmetric matrix

S =



0 1√
2

0 · · · · · · 0
1√
2

0 1
2 0 · · · 0

0 1
2 0 1

2 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · 1

2 0 1
2

0 · · · · · · 0 1
2 0


.

3.2. Zeros of Legendre polynomials

Legendre polynomials are usually denoted by Pn(x). The recurrence relation for Legendre polynomials
is [1]

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (12)
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Again, we rewrite this equation in the form

n

2n+ 1
Pn−1(x) +

n+ 1

2n+ 1
Pn+1(x) = xPn(x),

and we have αn =
n+ 1

2n+ 1
, βn = 0 and γn =

n

2n+ 1
for n = 0, 1, . . . , N .

Then the matrix R becomes

R =



0 1 0 0 · · · 0
1
3 0 2

3 0 · · · 0
0 2

5 0 3
5 · · · 0

...
...

. . .
. . .

. . .
...

0 0 0 · · · 0 N+1
2N+1

0 0 0 · · · N
2N+1 0


. (13)

The entries of the diagonal matrix G are now obtained from (9) as

gi =
1√

2i+ 1
, i = 0, . . . , N.

Thus, the zeros of the Legendre polynomial PN+1 are obtained as the eigenvalues of the symmetric matrix

S =



0 1√
3

0 · · · · · · 0
1√
3

0 2√
15

0 · · · 0

0 2√
15

0 3√
35

· · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · · · · N−1√
(2N−3)(2N−1)

0 N√
(2N−1)(2N+1)

0 · · · · · · 0 N√
(2N−1)(2N+1)

0


.

4. Computation of derivatives

The pseudospectral method will be used to solve numerically the Schrödinger equation which is an ordi-
nary differential equation of second order. The dependent variable in the equation will be approximated by
its Lagrange interpolating polynomial at the nodes taken as the zeros of a suitable orthogonal polynonmial.
Therefore, the derivatives of the dependent variable up to second order will also be needed.

Let

y(x) =
N∑

n=0

yn`n(x),

where

`n(x) =


FN+1(x)

(x− xn)F ′N+1(xn)
if x 6= xn

1 if x = xn.

Then

y′(x) =

N∑
n=0

yn`
′
n(x) and y′′(x) =

N∑
n=0

yn`
′′
n(x).

Therefore, we need to compute the derivatives `′n(x) and `′′n(x). First, we compute

`′n(x) =



F ′N+1(x)(x− xn)− FN+1(x)

(x− xn)2F ′N+1(xn)
if x 6= xn

F ′′N+1(xn)

2F ′N+1(xn)
if x = xn.
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Similarly, a long but straightforward computation gives the second order derivative as

`′′n(x) =



[
F ′′N+1(x)

(x− xn)
−

2F ′N+1(x)

(x− xn)2
+

2FN+1(x)

(x− xn)3

]
1

F ′N+1(xn)
if x 6= xn

1

3

F ′′′N+1(xn)

F ′N+1(xn)
if x = xn.

From the fact that xm, m = 0, 1, . . . , N are zeros of FN+1, we easily see that

`n(xm) = δmn =

{
0 if m 6= n
1 if m = n,

(14)

`′n(xm) =



1

(xm − xn)

F ′N+1(xm)

F ′N+1(xn)
if m 6= n

1

2

F ′′N+1(xn)

F ′N+1(xn)
if m = n,

(15)

`′′n(xm) =



F ′′N+1(xm)

(xm − xn)F ′N+1(xn)
−

2F ′N+1(xm)

(xm − xn)2F ′N+1(xn)
if m 6= n

1

3

F ′′′N+1(xn)

F ′N+1(xn)
if m = n.

(16)

5. Chebyshev and Legendre pseudospectral formulations of the Schrödinger equation

Consider the Schrödinger equation for an anharmonic oscillator.[
− d2

dx2
+ v(x)

]
ψ(x) = Eψ(x), x ∈ (−∞,∞), (17)

where v(x) is the potential which will be assumed to be a polynomial, in general. In the numerical calcula-
tions it will be taken as a polynomial containing only positive even powers of x. The Schrödinger equation
for anharmonic oscillator is defined on the whole real line. However, both Chebyshev and Legendre poly-
nomials are orthogonal on the finite interval [−1, 1]. Therefore, first we need a variable transformation to
transform the infinite interval (−∞,∞) to the finite interval [−1, 1].

5.1. Chebyshev pseudospectral formulation

First, we use the pseudospectral method with Chebyshev polynomials. The differential equation of
Chebyshev polynomials is [1]

(1− t2)T ′′n (t)− tT ′n(t) + n2Tn(t) = 0. (18)

In order to transform the infinite interval to the finite interval [−1, 1], and the differential operator in (17)
into the form in (18), we propose the following substitution on the independent variable.

t = sinαx, t ∈ [−1, 1]. (19)

where α is an optimization parameter which is useful for numerical purposes. We explain the role of this
parameter in the numerical examples. Then, if we denote

y(t) = ψ(x) and u(t) = v(x),
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we compute
dψ(x)

dx
= −α cos(αx)

dy

dt
d2ψ(x)

dx2
= α2 cos2(αx)

d2y

dt2
− α2 sin(αx)

dy

dt
.

Then, the equation (17) becomes

α2

[
(1− t2)d

2y

dt2
− tdy

dt

]
− u(t)y(t) = −Ey(t), t ∈ [−1, 1],

or,

(1− t2)d
2y

dt2
− tdy

dt
− u(t)

α2
y(t) = εy(t), (20)

where ε = − E
α2

.

Thus, we propose a solution of (20) of the form y(t) =
N∑

n=0

yn`n(t), where `n(t) =
TN+1(t)

(t− tn)T ′N+1(tn)
, and

tn, n = 0, 1, . . . , N are the zeros of the Chebyshev polynomial TN+1(t) and are known to be

tn = cos

(
π(n+ 1/2)

N + 1

)
, n = 0, 1, . . . , N. (21)

Then we insert this form of y(t) into the equation (20) and require that the equation is satisfied at the nodes
tm for m = 0, . . . , N , which gives

N∑
n=0

yn

[
(1− t2m)`′′n(tm)− tm`′n(tm)− u(tm)

α2
δmn

]
= ε

N∑
n=0

ynδmn.

As a result, we obtain a matrix eigenvalue problem in the form

KY = εY, (22)

where Kmn = (1 − t2m)`′′n(tm) − tm`′n(tm) − u(tm)

α2
δmn and Y = [y1 y2 . . . ym]T . Using the derivatives of

`n(tm) derived in (15) and (16), and the differential equation of the Chebyshev polynomials we compute the
entries of the matrix K as follows.

For m 6= n

Kmn = (1− t2m)

[
1

(tm − tn)

T ′′N+1(tm)

T ′N+1(tn)
− 2

(tm − tn)2
T ′N+1(tm)

T ′N+1(tn)

]
− tm

(tm − tn)

T ′N+1(tm)

T ′N+1(tn)

=
(1− t2m)

(tm − tn)

T ′′N+1(tm)

T ′N+1(tn)
− 2(1− t2m)

(tm − tn)2
T ′N+1(tm)

T ′N+1(tn)
− tm

(tm − tn)

T ′N+1(tm)

T ′N+1(tn)

=
1

T ′N+1(tn)

1

(tm − tn)

[
(1− t2m)T ′′N+1(tm)− tmT ′N+1(tm)

]
− 2(1− t2m)

(tm − tn)2
T ′N+1(tm)

T ′N+1(tn)

=
1

T ′N+1(tn)

1

(tm − tn)

[
−(N + 1)2TN+1(tm)

]
− 2(1− t2m)

(tm − tn)2
T ′N+1(tm)

T ′N+1(tn)

= − 2(1− t2m)

(tm − tn)2
T ′N+1(tm)

T ′N+1(tn)
.
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For m = n

Knn =
(1− t2n)

3

T ′′′N+1(tn)

T ′N+1(tn)
− tn

2

T ′′N+1(tn)

T ′N+1(tn)
− u(tn)

α2

= tn
T ′′N+1(tn)

T ′N+1(tn)
− N(N + 2)

3
− tn

2

T ′′N+1(tn)

T ′N+1(tn)
− u(tn)

α2

=
tn
2

T ′′N+1(tn)

T ′N+1(tn)
− N(N + 2)

3
− u(tn)

α2

=
tn
2

tn
1− t2n

T ′N+1(tn)− (N + 1)2

(1− t2n)
TN+1(tn)

T ′N+1(tn)
− N(N + 2)

3
− u(tn)

α2

=
t2n

2(1− t2n)
− N(N + 2)

3
− u(tn)

α2
.

Thus, we have

Kmn =


− 2(1− t2m)

(tm − tn)2
T ′N+1(tm)

T ′N+1(tn)
if m 6= n

t2n
2(1− t2n)

− N(N + 2)

3
− u(tn)

α2
if m = n

.

Since K is not a symmetric matrix, we apply the following procedure to obtain a symmetric matrix. We
rewrite Kmn for m 6= n as

Kmn = −
2
√

(1− t2m)(1− t2n)

(tm − tn)2

√
(1− t2m)T ′N+1(tm)√
(1− t2n)T ′N+1(tn)

.

Then using a diagonal matrix

L = diag

{√
1− t20T

′
N+1(t0),

√
1− t21T

′
N+1(t1), · · · ,

√
1− t2NT

′
N+1(tN )

}
,

and defining Y = LZ, we transform the problem

KY = εY,

into
PZ = εZ,

where P = L−1KL is a symmetric matrix with entries

Pmn =


−

2
√

(1− t2m)(1− t2n)

(tm − tn)2
if m 6= n

t2n
2(1− t2n)

− N(N + 2)

3
− u(tn)

α2
if m = n

.

Here the function u(t) is in the form

u(t) = v(x) = v(
1

α
arcsin t).
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6. Legendre pseudospectral formulation

In this section, we consider the Legendre polynomials for the pseudospectral method to solve the
Schrödinger equation [

− d2

dx2
+ v(x)

]
ψ(x) = Eψ(x), x ∈ (−∞,∞). (23)

Since Legendre polynomials form an orthogonal set in [−1, 1] and are solutions of the differential equation

(1− t2)P ′′n − 2tP ′n + n(n+ 1)Pn = 0, (24)

we need to apply a transformation on the independent variable x, which transforms the differential operator
of the (23) to Legendre type and the infinite interval (−∞,∞) into [−1, 1].

Let
t = tanh(αx),

where α > 0 is an optimization parameter. Then t ∈ (−1, 1) for x ∈ (−∞,∞) and

x =
1

α
tanh−1 t =

1

2α
ln

(
1 + t

1− t

)
.

If we define y(t) = ψ(x), u(t) = v(x), then

dψ

dx
= αsech2(αx)

dy

dt
d2ψ

dx2
= α2sech2(αx)

[
(1− tanh2(αx))

d2y

dt2
− 2 tanh(αx)

dy

dt

]
= α2(1− t2)[(1− t2)d

2y

dt2
− 2t

dy

dt
].

With these new variables, (23) is transformed into

(1− t2)
[
(1− t2)y′′(t)− 2ty′(t)

]
− u(t)

α2
y(t) = εy(t), (25)

where ε = − E
α2

. The differential operator of the transformed equation resembles the differential operator of

Legendre equation. Therefore, we propose

y(t) =

N∑
n=0

yn`n(t), (26)

where

`n(t) =
PN+1(t)

(t− tn)P ′N+1(tn)
,

and PN+1(t) is the Legendre polynomial of degree N + 1 and tn, n = 0, 1, . . . , N are the zeros of PN+1(t).
We put (26) into the equation (25) and require its satisfaction at the nodes t0, t1, · · · , tN . This results in

N∑
n=0

yn

{
(1− t2m)

[
(1− t2m)`′′n(tm)− 2tm`

′
n(tm)

]
− u(tm)

α2
`n(tm)

}

= ε
N∑

n=0

yn`n(tm), m = 0, 1, · · · , N.

Hence, we obtain a matrix eigenvalue problem of the form

KY = εY,
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where the (N + 1)× (N + 1) matrix K has entries

Kmn = (1− t2m)
[
(1− t2m)`′′n(tm)− 2tm`

′
n(tm)

]
− u(tm)

α2
`n(tm).

To compute the entries of K, we employ (14), (15) and (16) and the differential equation of Legendre
polynomials.

For m 6= n

Kmn = (1− t2m)

{
(1− t2m)

[
1

tm − tn
P ′′N+1(tm)

P ′N+1(tn)
− 2

(tm − tn)2
P ′N+1(tm)

P ′N+1(tn)

]
− 2tm

(tm − tn)

P ′N+1(tm)

P ′N+1(tn)

}

= (1− t2m)

{
1

(tm − tn)P ′N+1(tn)

[
(1− t2m)P ′′N+1(tm)− 2tmP

′
N+1(tm)

]
−

2(1− t2m)P ′N+1(tm)

(tm − tn)2P ′N+1(tn)

}

=
(1− t2m)

(tm − tn)P ′N+1(tn)
[−(N + 1)(N + 2)PN+1(tm)]−

2(1− t2m)2P ′N+1(tm)

(tm − tn)2P ′N+1(tn)

= −
2(1− t2m)2P ′N+1(tm)

(tm − tn)2P ′N+1(tn)
.

For m = n

Knn = (1− t2n)

[
1− t2n

3

P ′′′N+1(tn)

P ′N+1(tn)
− tn

P ′′N+1(tn)

P ′N+1(tn)

]
− u(tn)

α2

= (1− t2n)

[
4tn
3

P ′′N+1(tn)

P ′N+1(tn)
− (N + 1)(N + 2)− 2

3
− tn

P ′′N+1(tn)

P ′N+1(tn)

]
− u(tn)

α2

= (1− t2n)

[
tn
3

2tn
(1− t2n)

− (N + 1)(N + 2)− 2

3

]
− u(tn)

α2

=
2

3
t2n −

(1− t2n)

3
(N2 − 3N)− u(tn)

α2
.

In addition, we multiply and divide the off diagonal entries of Kmn by (1− t2n) which gives

Kmn =


−2(1− t2m)(1− t2n)

(tm − tn)2
(1− t2m)P ′N+1(tm)

(1− t2n)P ′N+1(tn)
if m 6= n

2

3
t2n −

(1− t2n)

3
(N2 − 3N)− u(tn)

α2
if m = n

,

where u(tn) = v(xn) and xn =
1

2α
ln

(
1 + tn
1− tn

)
. Again, in order to deal with a matrix of simpler structure,

we transform the eigenvalue problem
KY = εY,

into the problem
PZ = εZ,

where P = L−1KL, Z = L−1Y and

L = diag
{

(1− t20)P ′N+1(t0), (1− t21)P ′N+1(t1), · · · , (1− t2N )P ′N+1(tN )
}
,
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so that the matrix P has entries

Pmn =


−2(1− t2m)(1− t2n)

(tm − tn)2
if m 6= n

2

3
t2n −

(1− t2n)

3
(N2 − 3N)− u(tn)

α2
if m = n

.

We have obtained pseudospectral formulations with 2 different types of orthogonal polynomials for the
same problem. It should be noticed that, in both cases we deduce a symmetric eigenvalue problem

PZ = εZ,

where P contains the potential function v(x) in its diagonal entries. Although we considered v(x) to be an
even degree polynomial, one can take the potential as any function on (−∞,∞) without singularities.

7. Numerical Example

To our knowledge, the Chebyshev and Legendre pseudospectral formulations for the Schrödinger equation
with polynomial potential has not been used by other authors before.

The numerical results presented here are given for a polynomial potential

v(x) = x2 + v4x
4 + v6x

6 + v8x
8,

with 3 different sets of the coefficients v4, v6 and v8 representing small and large perturbations on the
harmonic oscillator. The substitution transforming the infinite interval (−∞,∞) to [−1, 1] employed in the
previous section contains an optimization parameter α > 0. The effect of α is observed in the numerical
results presented below. First, we noticed that by taking 0 < α < 1 the accuracy of the method increases
when we take same number N . We tried various values for α in order to determine an optimum one.
We observed that the optimal value for α which gives the most accurate results is 0.3 < α < 0.4. For
comparison purposes, we used the same values of the coefficients v4, v6 and v8 in both Chebyshev and
Legendre pseudospectral methods.

In Tables 1-3, we give the computed eigenvalues of v(x) = x2 + v4x
4 with v4 = 0.1, 1, and 5, with both

Chebyshev and Legendre pseudospectral methods. Similarly, in Tables 4-6 and Tables 7-9 we present the
eigenvalues for v(x) = x2 + v6x

6 and v(x) = x2 + v8x
8 with v6 = 0.1, 1, 5 and v8 = 0.1, 1, 5, respectively.
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Table 1: Eigenvalues of v(x) = x2 + 0.1x4 with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3 and 0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

25 1 0.77821814 1.06523087 1.06528551 1.06528551 1.06528550 1.06528551
2 2.45684459 3.30572422 3.30687201 3.30687201 3.30687174 3.30687201
3 5.23643426 5.73925266 5.74795927 5.74795909 5.74795585 5.74795909
4 10.07118779 8.32476701 8.35267783 8.35267668 8.35264842 8.35267552
5 17.00870826 11.09039221 11.09859562 11.09860131 11.09840147 11.09859147

35 1 0.77868548 1.06528779 1.06528551 1.06528551 1.06528550 1.06528551
2 2.45834074 3.30685123 3.30687201 3.30687201 3.30687174 3.30687201
3 5.23855288 5.74717374 5.74795927 5.74795927 5.74795589 5.74795927
4 10.07335633 8.34540267 8.35267783 8.35267783 8.35264880 8.35267782
5 17.01087644 11.06534188 11.09859562 11.09859563 11.09840420 11.09859559

Table 2: Eigenvalues of v(x) = x2 + x4 with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3 and 0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

25 1 1.24367760 1.39233946 1.39235165 1.39235128 1.39235164 1.39235164
2 3.88803404 4.64866785 4.64881273 4.64880867 4.64881270 4.64881250
3 7.09363103 8.65427283 8.65504716 8.65505802 8.65504996 8.65504682
4 11.69930683 13.15550075 13.15677362 13.15717124 13.15680390 13.15678589
5 18.39805834 18.06573383 18.05764381 18.05920876 18.05755743 18.05757240

35 1 1.24430863 1.39235199 1.39235164 1.39235164 1.39235164 1.39235164
2 3.89138200 4.64881618 4.64881270 4.64881270 4.64881270 4.64881270
3 7.10071608 8.65505865 8.65504996 8.65504997 8.65504996 8.65504996
4 11.70835141 13.15669679 13.15680390 13.15680402 13.15680390 13.15680389
5 18.40737547 18.05630541 18.05755744 18.05755764 18.05755744 18.05755742

Table 3: Eigenvalues of v(x) = x2 + 5x4 with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3 and 0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

25 1 2.00513163 2.01833959 2.01833601 2.01828991 2.01834063 2.01834071
2 6.90747928 7.01346291 7.01316949 7.01291597 7.01347884 7.01348552
3 12.98420734 13.46760044 13.46519639 13.46822754 13.46772812 13.46781824
4 19.39380318 20.81342486 20.81942817 20.84355093 20.81397885 20.81423059
5 26.18319353 28.87454546 29.00067237 28.92968083 28.87523713 28.87251179

35 1 2.00524431 2.01834064 2.01834065 2.01834069 2.01834065 2.0183406
2 6.90848786 7.01347917 7.01347917 7.01347971 7.01347919 7.01347919
3 12.98942369 13.46773091 13.46773099 13.46773250 13.46773041 13.46773042
4 19.41042879 20.81397517 20.81397358 20.81393729 20.81396694 20.81396676
5 26.21584221 28.87505117 28.87499743 28.87466289 28.87499635 28.87499442
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Table 4: Eigenvalues of v(x) = x2 + 0.1x6 with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3 and 0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

25 1 0.82136037 1.10913158 1.10908704 1.10908493 1.10908708 1.10908741
2 2.59735307 3.59673752 3.59603643 3.59600962 3.59603692 3.59603941
3 5.42573191 6.64912266 6.44438870 6.64423837 6.64439171 6.64439256
4 10.23766105 10.25553004 10.23786735 10.23755840 10.23787372 10.23776622
5 17.14686086 14.33495987 14.30710440 14.30905999 14.30704008 14.30612198

35 1 0.82213901 1.10907701 1.10908708 1.10908708 1.10908708 1.10908708
2 2.59998114 3.59592271 3.59603692 3.59603697 3.59603692 3.59603692
3 5.42963941 6.64373424 6.64439171 6.64439222 6.64439171 6.64439168
4 10.24177732 10.23548559 10.23787372 10.23787711 10.23787372 10.23787326
5 17.15099475 14.30209050 14.30704004 14.30705410 14.30704005 14.30703642

Table 5: Eigenvalues of v(x) = x2 + x6 with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3 and 0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

25 1 1.34804349 1.43562558 1.43562823 1.43558113 1.43562447 1.43561421
2 4.53988151 5.03347855 5.03325961 5.03247659 5.0339510 5.03333064
3 8.58481692 9.96748576 9.94661527 9.95858376 9.96662356 9.96653816
4 13.57703878 15.99435165 15.97578910 15.95052610 15.98948891 15.99069217
5 20.12211425 22.92784888 22.86784451 22.84082832 22.91056041 22.92124380

35 1 1.34888050 1.43562563 1.43562469 1.43562568 1.43562462 1.43562466
2 4.54486603 5.03340355 5.0339666 5.03340564 5.03339594 5.03339632
3 8.59888479 9.96665256 9.96662637 9.96667250 9.96662200 9.96662421
4 13.60123088 15.98949774 15.98945494 15.98955950 15.98944078 15.98944883
5 20.15213249 22.90999893 22.91016767 22.90978486 22.91018039 22.91018978

Table 6: Eigenvalues of v(x) = x2 + 5x6 with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3 and 0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

25 1 1.90917691 1.91245513 1.91128342 1.91085538 1.91243877 1.91238806
2 6.93892856 6.96089620 6.95341081 6.95314702 6.96078634 6.96070105
3 14.07706707 14.16947735 14.16134290 14.18357771 14.16930401 14.17155146
4 22.73502342 23.04369447 23.19954684 23.31496132 23.04540916 23.06414338
5 32.42847415 33.28107701 34.07590753 34.26916982 33.29729901 33.37039412

35 1 1.90923202 1.91245379 1.91246042 1.91248042 1.91245381 1.91245304
2 6.93931952 6.96085722 6.96092740 6.96109653 6.96085699 6.96085129
3 14.07885754 14.16910270 14.16958004 14.17040873 14.16909876 14.16907771
4 22.74167405 23.04155561 23.04331861 23.04489094 23.04152663 23.04151125
5 32.44902932 33.27303422 33.27378287 33.26561440 33.27289621 33.27331610
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Table 7: Eigenvalues of v(x) = x2 + 0.1x8 with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3 and 0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

N = 25 1 0.90040430 1.16881854 1.16899756 1.16913690 1.16897047 1.16894127
2 2.86499847 3.93821953 3.93990939 3.94098877 3.93972209 3.93945483
3 5.81131004 7.63178440 7.64054004 7.64485274 7.63995660 7.63859306
4 10.60557592 12.24915931 12.28114575 12.28950933 12.28121949 12.27622222
5 17.46496405 17.66611997 17.74989850 17.73603399 17.76146648 17.74875867

N = 35 1 0.901189675 1.16896057 1.16897056 1.16897315 1.16897045 1.16897080
2 2.87053538 3.93966773 3.93972209 3.93974585 3.93972136 3.93972436
3 5.82033292 7.63985744 7.63995081 7.64007691 7.63994849 7.63996323
4 10.61569369 12.28152126 12.28116835 12.28164349 12.28116774 12.28122019
5 17.47530759 17.76457982 17.76117289 17.76247695 17.76121363 17.76135008

Table 8: Eigenvalues of v(x) = x2 + x8 with with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3 and
0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

N = 25 1 1.45443154 1.49097356 1.49164297 1.49216006 1.49097978 1.49086529
2 5.16194558 5.36831059 5.37097110 5.37213067 5.36846606 5.36724388
3 10.33082783 10.99095419 10.98828972 10.97822409 10.99224891 10.98468049
4 16.63046206 18.17871483 18.09571790 18.00542654 18.18568101 18.15180974
5 23.91095664 26.70030474 26.27554829 25.93402071 26.73006112 26.62129447

N = 35 1 1.45510986 1.49101798 1.49100936 1.49096002 1.49097978 1.49101644
2 5.16602825 5.36876016 5.36873050 5.36845373 5.36877730 5.36874817
3 10.34482556 10.99363375 10.99374600 10.99308585 10.99373476 10.99357409
4 16.66484594 18.19062967 18.19210062 18.19227448 18.19109499 18.19039319
5 23.97352728 26.74169159 26.75085878 26.76228292 26.74345735 26.74099783

Table 9: Eigenvalues of v(x) = x2 + 5x8 with with with Chebyshev EC
i and Legendre EL

i pseudospectral methods for α = 1; 0.3
and 0.4.

N i EC
i (α = 1) EL

i (α = 1) EC
i (α = 0.3) EL

i (α = 0.3) EC
i (α = 0.4) EL

i (α = 0.4)

N = 25 1 1.88703727 1.88737455 1.88160102 1.88052064 1.88719192 1.88631521
2 7.00825824 7.01018966 6.98460727 6.98416575 7.00966632 7.00541507
3 14.66930090 14.67622047 14.67627429 14.70828891 14.67948901 14.67272087
4 24.51315063 24.53428274 24.88139816 25.04460675 24.56795683 24.58737554
5 36.20185978 36.26315566 38.12924093 38.93640760 36.44855707 36.64593094

N = 35 1 1.88704900 1.88748848 1.88770418 1.88791810 1.88748206 1.88746088
2 7.00833002 7.01093701 7.01255689 7.01413864 7.01089533 7.01071889
3 14.66958128 14.67928516 14.68746710 14.69506790 14.67911762 14.67816555
4 24.51407592 24.54405987 24.57308431 24.59775636 24.54354400 24.53947908
5 36.20462164 36.28693355 36.35470965 36.40150930 36.28593542 36.27237435

8. Conclusion

The Schrödinger equation for anharmonic oscillator studied in this paper is a originally defined on the
infitine interval (−∞,∞). Therefore, it is natural to propose a pseudospectral method based on Hermite
polynomials. Also, one can use a substitution which transforms the interval to (0,∞) and propose pseu-
dospectral scheme based on Laguerre polynomials. On the other hand, the numerical calculations presented
in the previous section show that the problem can be also treated via pseudospectral methods based on
Chebyshev and Legendre polynomials. This approach provides a different aspect for the use pseudospectral
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methods with Chebyshev and Legendre polynomials which are usually not considered very often since most
of the one dimensional Schrödinger equations are defined on infinite intervals.

Numerical results also show the benefit of using an optimization parameter which improves the accuracy
with smaler size matrices. However, the choice of an optimal value for this parameter is not theoretically
verified and one should determine this optimal value only experimentally.
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