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Abstract

In this study, we introduce the pseudospectral methods based on Chebyshev and Legendre polynomials for
the Schrodinger equation of anharmonic oscillator. The method transforms the problem into an unsym-
metric matrix eigenvalue problem which can be symmetrized by using a suitable similarity transformation.
Computation of the zeros of the relevant orthogonal polynomials is also converted into a symmetric matrix
eigenvalue problem. The method is applied to the Scrodinger equation of an anharmonic oscillator of various
types and the numerical results and discussed.
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1. Introduction

One of the most simple looking, but most extensively studied problems in quantum mechanics is the
problem of finding the eigenvalues of the so called anharmonic oscillator. The simplicity of the Schrodinger
equation for a one dimensional anharmonic oscillator does not imply that it can be solved easily. For many
years, numerous studies based on different numerical methods on this problem have been reported [2, 3, 4, 5].

The pseudospecral methods have been proved to be very efficient and powerful for numerical solutions of
both ordinary and partial differential equations. The construction of the pseudospectral methods employs
the Lagrange interpolation with nodes chosen as the zeros of some orthogonal polynomial. As a result, the
relevant boundary or eigenvalue problem for the differential equation is transformed into an unsymmetric
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matrix eigenvalue problem. However, using a suitable similarity transformation, it can be converted into a
symmetric eigenvalue problem [6, 7, 8, 9, 10].

The paper is organized as follows. In the next section, we introduce briefly the general formulation of the
pseudospectral methods. In Section 3, the computation of the zeros of Chebyshev and Legendre polynomials
is derived. The next two sections present the application of Chebyshev and Legendre pseudospectral methods
to the Schrodinger equation of a one dimensional anharmonic oscillator. The numerical results are presented
in Section 6 and conclusion and some remarks are given in Section 7.

2. Formulation of the Pseudospectral Methods

The formulation of the pseudospectral methods is based on the Lagrange interpolating polynomial which
interpolates a function y = f(z) at the nodes (z,,y,) n =0,1,..., N and has the form

N
L(x) =Y la(2)yn, yn=f(zn), n=0,...,N, (1)
n=0
where N
H (z — xm)
ol) = S (2)
H (T — Tm)
m=0,m#n
Using the notation
Fya(2) = (& —20) -+ (¢ — @) -+ (& — 2v), 3)

and the immediate fact that

hE

Fiy (@) =Y (@ = o) (@ = 2p1) (@ = 2p) - (@ = 2),

£
Il

0

we can write the polynomials ¢,,(z) in (2) as

Frnyi(z)
b(z) = (z—an)Fiyiq(2n)
1 if z=ux,

if z#ax, (4)

Since any orthogonal polynomial of degree IV has exactly IV real and distinct zeros, then it can be written
as

Fy(x)=an(z —xo)(x —2x1) - (. — xN_1). (5)

Therefore, if we take the function Fx41 in (4) as an orthogonal polynomial then the points xg, ...,z N will
be the real distinct zeros of this polynomial.

3. Computation of the zeros of orthogonal polynomials

In this section, we discuss the computation of zeros g, z1, . . ., y of any orthogonal polynomial Fyy11(z).
We employ the three-term recurrence relation of an orthogonal polynomial given in general as [1],

anFn-&-l(m) + BnFn('r) + ’YnFn—l(«T) = .CCFn(l’),

for n € N where ay,, 8,7V, are constants.
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Assuming that F_i(z) = 0, we write this relation for n = 0,1,..., N which leads to a system of the form

50F0($)+(10F1(:L‘) = :EFo(x),
vFo(x) + Bl (x) + aaFa(v) = xFi(z), (©)

YNFn-1(z) + BNFn(z) + CVNFN-H(-%'). = UCFN(HC)

In matrix form, this system is written as

[ Bo a0 O O - 0 Fy(z) Fo () 0
m o 0 - 0 Fi(z) Fi(x) 0
0 7 B2 a -+ 0 Fy(z) | =2 | Folz) | —ay :
Dol el el el : : 0

L0 0 0 - 9w BN ][ Fn(=) | | Fn(z) | | Fvyi(x) |

The requirement Fy41(z) = 0 results in a matrix eigenvalue problem of the form

RF = zF, (7)
where R is the tridiagonal matrix
[ Bo g O 0 -+ 0 ]
M Boar 0 - 0
R=1|0 7 B a -+ 0 |
L0 0 0 - 9w BN ]
and F = [Fy(z)--- Fi(z) ...Fn(2)]7. The matrix R is in general unsymmetric. However, it is possible to

use a similarity transformation to transform the unsymmetric eigenvalue problem (7) into a symmetric one.
Indeed, let

G:diag{907gla"'7gl\f}7 (8)
be a nonsingular diagonal matrix. Define
Y =G 'F.
Then
RGY = RF = zF = zGY,
and hence,

G 'RGY = 2G~'GY = V.

This can be written as
SY =Y,

where S = G™'RG. Clearly the entries of S are computed as
1 .
Sij:fﬁ'jgj, Z,jzl,...N,
Gi
and moreover, S is also tridiagonal, that is,
SijZO if j>14+1 and j<i-—1.
If we require that S is symmetric, that is,

Si+1,i = Siji+1, i:O,l,...,N—l,
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then,
2 2
9; Vi+1 = Gi41%,
which yields
T =01,

gi+1 = Gi )
Q;

N —1. (9)

From this equation we compute the entries g; of the diagonal matrix G recursively, starting with some
arbitrary go # 0.

3.1. Zeros of Chebyshev polynomials
We denote the Chebyshev polynomials by T;,(x). The zeros of the Chebyshev polynomial T 1 of degree

N + 1 are known to be [1]
(n+1/2)
= MRT 72 p=o0.1,...,N. 1
x cos< Nl ) n=0 (10)

However, using the procedure described above, these zeros can also be obtained as matrix eigenvalues. The
recurrence relation for Chebyshev polynomials is [1]

1 1
§Tn,1(:v) + ETTL+1($) =zT,, n=12,...

and
Tl = J;TO)

so that we have ag =1, 5o =0, o, = %, Brn =0 and v, = % forn=1,...,N. Then the matrix R in (7) has

the form

0 1 0 0 0
1/2 0 1/2 0 0
0 1/2 0 1/2 0
rR=| . (11)
0 0 0 0 1/2
L0 0 0 1/2 0

The entries of the similarity transformation matrix G are now obtained from (9) as

1
91*57

starting with go = 1. Thus, the zeros of the Chebyshev polynomial T 1 are obtained as the eigenvalues of

i=1,2,...,N,

the symmetric matrix

o L o 0
L %? L 0
\/5121
g o 2 o 1% 0
' ; ;
0 2 0 3
0 0 4 0]

8.2. Zeros of Legendre polynomials

Legendre polynomials are usually denoted by P, (x). The recurrence relation for Legendre polynomials

is [1]

(n+1)Pyti(x) = 2n+ 1)zP,(z) — nPy—1(z).

(12)
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Again, we rewrite this equation in the form

n n+1
P, —P, =zP,
o+ 1 n 1(37) + o+ 1 n—i—l(w) x ’ﬂ(x)7
d we h ntl s 0 and ng 0.1,....N
and we have a, = ——— =0 an = orn = ..., N.
Wi Ve ont1 " Tn o+ 1 )y 1y )
Then the matrix R becomes
0o 1 0 0 0
1 2
3 0 5 O 0
02 o 2 0
R = - : (13)
N1
00 0 - 2 2NJ<FH
L0 0 0 - sxmz 0]
The entries of the diagonal matrix G are now obtained from (9) as
1
gi; = 2207,N

V241

Thus, the zeros of the Legendre polynomial Py, are obtained as the eigenvalues of the symmetric matrix

_ 1 -
0 7 0 0
1 0 2 0 e 0
V3 V15
V15 V35
s=1 . 7 . g
; - . x
(2N—=3)(2N—-1) (2N—1)(2N+1)
0 - ... 0 - N 0
i (2N—-1)(2N+1) ]

4. Computation of derivatives

The pseudospectral method will be used to solve numerically the Schrodinger equation which is an ordi-
nary differential equation of second order. The dependent variable in the equation will be approximated by
its Lagrange interpolating polynomial at the nodes taken as the zeros of a suitable orthogonal polynonmial.
Therefore, the derivatives of the dependent variable up to second order will also be needed.

Let

N
y(:c) = Z yn£n<x)7
n=0

where P ()
N+1\T .

t@) = @) Py T T

1 if x=ux,.

Then
N N
Y(@) =) ynly(x) and  y'(z) =D yul ().
n=0 n=0

Therefore, we need to compute the derivatives ¢/, (z) and ¢/ (z). First, we compute

Fya(@) (@ —an) = Fyya(2)
(z — xn)2Fll\7+1($n)

F]/\/Hl(xn)
2FJ/\7+1($n)

if x#x,

if x=ux,.
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Similarly, a long but straightforward computation gives the second order derivative as

Fl o (z) 2Fy,.(x) 2F 1
N+1( ) o N+1( 2)+ N+1(l‘g] : if a:;ézn
(x —xzp) (2 — ) (x — ) FN+1($n)
a@=y
1 T
77],\7“( n) if x=ux,.
3 FN+1(mn)
From the fact that x,,,, m = 0,1,..., N are zeros of Fiy11, we easily see that
_ _J 0 if m#n
1 FJ,V+1($m) .
if m#n
(T — 7p) FZ/V+1(95n) f #
b =3 (15)
1 Fy g (2 ‘
- if m=n,
2 Fiy 4 (2n)
FJI\/7+1(xm) B 2FJIV+1(xm) if m+n
(Tm — ) Py (Tn) (T — 20)? Fyy (0)
0 () = (16)
1 F/l/ T
3 FN+1(mn)
5. Chebyshev and Legendre pseudospectral formulations of the Schrodinger equation
Consider the Schrodinger equation for an anharmonic oscillator.
dQ
[—de + v(ac)] Y(x) = EY(x), x€ (—o00,00), (17)

where v(x) is the potential which will be assumed to be a polynomial, in general. In the numerical calcula-
tions it will be taken as a polynomial containing only positive even powers of x. The Schrédinger equation
for anharmonic oscillator is defined on the whole real line. However, both Chebyshev and Legendre poly-
nomials are orthogonal on the finite interval [—1,1]. Therefore, first we need a variable transformation to
transform the infinite interval (—oo, c0) to the finite interval [—1, 1].

5.1. Chebyshev pseudospectral formulation

First, we use the pseudospectral method with Chebyshev polynomials. The differential equation of
Chebyshev polynomials is [1]
(1 — )T (t) — tT) (t) + n*Tp,(t) = 0. (18)

In order to transform the infinite interval to the finite interval [—1,1], and the differential operator in (17)
into the form in (18), we propose the following substitution on the independent variable.

t=sinax, te[-1,1]. (19)

where « is an optimization parameter which is useful for numerical purposes. We explain the role of this
parameter in the numerical examples. Then, if we denote

y(t) = P(z) and u(t) = v(z),
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we compute

d
d;figsx) = —« Cos(aa:)zliy )
;i(f) = o COSQ(Oé.'E)dTg; —a? sin(am)d—gz.
Then, the equation (17) becomes
d’y  dy
2 2
1—-t°)— —t—| —u(t)y(t) = —FEy(t te|—1,1
or,
d>y  dy  u(t)
1—t%) o —t— — —2y(t) = ey(t 2
(A=t —3 —to = —5y(t) =ey(t), (20)
where € = 3
. B Tn+1(t)
Thus, we propose a solution of (20) of the form y(t Z Ynln(t), where £,,(t) = ; , and
(t - tn)TN—H(tn)
tn, n=0,1,..., N are the zeros of the Chebyshev polynomlal Tn+1(t) and are known to be
m(n+1/2)
t, = mRT 72 p=0.1,...,N. 21
cos < Nl > n=>0 (21)

Then we insert this form of y(¢) into the equation (20) and require that the equation is satisfied at the nodes
m for m =0,..., N, which gives

3 u(tn) -
Z Yn |:(1 - t?n)di(tm) - tmgln(tm) - a;némn] = Z ynémn
n=0 n=0

As a result, we obtain a matrix eigenvalue problem in the form
KY =¢Y, (22)

t
where K, = (1 — 207 (tn) — tmll (tm) — L;”)

a
lp(tm) derived in (15) and (16), and the differential equation of the Chebyshev polynomials we compute the
entries of the matrix K as follows.

Smn and Y = [y1 y2 ...ym]?. Using the derivatives of

For m #n
Ko = (1—12) 1 Ty (tm) B 2 Thiq(tm) _tm Thi1(tm)
L =) Ty (Bn) (B = 10)? Ty () | (b = ) Ty ()
(1—12) Ty (tm) ~ 21— t2) Ty (tm) tm Ty (tm)

(tm = tn) Ty oy (tn)  (tm = tn)? Ty g (tn) (b —tn) Tiyyy(tn)

2(1 —t2,) TN 41 (tm)
(tm = tn)? T (tn)

1 1
Ty (i) o — 1) (0™

)TN 1 (tm) = tm Ty (tm)] —

- Tz’v+11( tn) (tm 1_ tn) [~ (N +1)* T (tm)] —

201 —12) Ty (tm)
(tm = tn)? Ty yy ()

201 - t2) Ty i1 (tm)
(tm —tn)? Ty (tn)
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Form=n

3 TJ/V+1(tn) 2 TJ/V+1(tn) o

Thoa(tn) NIN+2) 6 Thp(tn)  ult)

- ¢ o
"Thery(tn) 3 2T, () o

tn TNy (tn) NN +2)  u(tn)

2 T,y (tn) 3 a?
tn (N +1)
— TN (tn) — —— Ty (t
_ tpiogvnt) gy Iva ) v g )
) Th 1 (tn) 3 o?
_ t2 N(N+2)  u(ty)
21 —12) 3 a?

Thus, we have
2(1 —13) Ty (tm)

— it m#n
Ko = | = 00 T 1)
th  NN+2)  ulty) 4 men
2(1 —12) 3 a? B

Since K is not a symmetric matrix, we apply the following procedure to obtain a symmetric matrix. We
rewrite K, for m #n as

2¢/(1—2)(1 = 22) V(1 = 3) Ty 1 (tm)

(tm = tn) = B)T} ()

Kmn:—

Then using a diagonal matrix

L= diag{ 1— 3TN (t0),\/1 — 3TNy (t1), -+ /1 — t?VT;VH(tN)} :
and defining Y = LZ, we transform the problem
KY =¢Y,

into

PZ =¢7Z,

where P = L' KL is a symmetric matrix with entries

2¢/(1 —t2)(1 —¢t2
P = t2 N(N+2) u(ty) .
- — if m=n
2(1—12) 3 a?

Here the function u(t) is in the form

u(t) =v(z) = v(é arcsint).
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6. Legendre pseudospectral formulation

In this section, we consider the Legendre polynomials for the pseudospectral method to solve the
Schrédinger equation

d?
|:_dl‘2 + U(l‘):| w(x) = Ed)(m), x € (—oo, oo) (23)
Since Legendre polynomials form an orthogonal set in [—1, 1] and are solutions of the differential equation
(1—t)P! —2tP, + n(n+1)P, =0, (24)

we need to apply a transformation on the independent variable z, which transforms the differential operator
of the (23) to Legendre type and the infinite interval (—oo, c0) into [—1,1].
Let
t = tanh(ax),

where o > 0 is an optimization parameter. Then t € (—1,1) for z € (—o0, 00) and

1 1+t
—tanhlt_—l RN
2c 1—1¢

If we define y(t) = ¥ (x), u(t) = v(x), then

a = asechQ(am)@
d 1:2 it d? d
-5 = o’sech?(ax) [(1 - tanh2(a:[:))d—g — 2tanh(ax) dﬂ
d’y  dy
= a?(1 -t)[(1 —t?) == —2t—].
With these new variables, (23) is transformed into
2 2\, M ' u(t)
(1= 8) [(1 = )" (1) = 2ty ()] = —5y(t) = ey(?), (25)

where £ = ——. The differential operator of the transformed equation resembles the differential operator of

«
Legendre equation. Therefore, we propose

N
= Z yngn(t)a (26)
n=0

where
Py (1)

(t - tn)PJ,\Z—i—l(tn),
and Pyy1(t) is the Legendre polynomial of degree N +1 and t,,, n =0,1,..., N are the zeros of Py,1(t).
We put (26) into the equation (25) and require its satisfaction at the nodes to,¢1,--- ,tx. This results in

bn(t) =

Zyn { (1= £2) [(1 = ) t) — 2l (b)) - “(tm>£n<tm>}

ZEZynﬁn(tm), m=0,1,---,N.

Hence, we obtain a matrix eigenvalue problem of the form

KY =¢Y,
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where the (N + 1) x (N + 1) matrix K has entries

Kmn = (1 - t12n) [(1 - t%n)gz,(tm) - thgé(tm)] -

To compute the entries of K, we employ (14), (15) and (16) and the differential equation of Legendre
polynomials.
For m #n

K = (1- 42 ) {(1 2 ) { 1 PJ/\,7+1(75m) _ 2 PJ,V+1(tm) B %t p]’V_H(tm)}
m "t =t Py oy (tn) (b — )2 Py 1 (tn) | (b — tn) Ployy(tn)

1
— _ 42
= (1 tm) { (tm IR tn)PJI\7+1(tn)

(1= )Pl 1 () = 2Pl ()] — 2= P ) }

(tm - tn)2P1/V+1(tn)

2(1 = 13,)* Py (tm)
(tm - tn)2PJ/\/+1(tn)

(1-t3)
(tm - tn)PJ/\/Jrl(tn)

[—(N + 1)(N +2)Pny1(tm)] —

2(1 = 2)*Phy (tm)
(tm - tN)QP]I\Url(tn)

For m=n
Ko = (1—£2) [1 -t Py (tn) B P]/\/f+1(tn)] _ultn)
nn - n
Y3 PJ,\/+1(tn) Py (tn) o

_%Pll\lf-i-l(tn) . (N+ 1)(N+2) —92 ¢ P]/\//—l—l(tn) U(tn)

_ 2 _

= (U-t) L 3 PJ/V+1(tn) 3 nPJ,v+1(tn) a?
B (t, 2t, (N+1)(N+2)—21 ul(ty)

= (1-1) 3 (1—1t2) 3 }_ a2

_ 2 (1-13) u(ty)

In addition, we multiply and divide the off diagonal entries of K, by (1 —t2) which gives

2(1 — 7) (1 — t2) (1 = £7,) Py 4 (tm)

- (tm - tn)Q (1 - t%)PJ/\f—i-l(tn) Zf " 7& "
Kpn = ’
2, (1-t3) \2 u(tn) : _

1 1+¢
where u(t,) = v(z,) and x,, = % In (1 + t”). Again, in order to deal with a matrix of simpler structure,
« —ln

we transform the eigenvalue problem
KY =¢Y,

into the problem
PZ =¢Z,

where P = L 'KL, Z = L7'Y and

L =diag {(1 — )Py (to), (1 — 1) Py oy (t1), -+, (1 — t3) Py (EN) }
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so that the matrix P has entries

2 )
_2(1@““_)&1)2%) if m#n

2, (1—-13)
22 mI(N?2_3N) -

u(tn)
)

if m=n

We have obtained pseudospectral formulations with 2 different types of orthogonal polynomials for the
same problem. It should be noticed that, in both cases we deduce a symmetric eigenvalue problem

PZ =¢Z,

where P contains the potential function v(z) in its diagonal entries. Although we considered v(z) to be an
even degree polynomial, one can take the potential as any function on (—oo, 00) without singularities.

7. Numerical Example

To our knowledge, the Chebyshev and Legendre pseudospectral formulations for the Schrédinger equation
with polynomial potential has not been used by other authors before.
The numerical results presented here are given for a polynomial potential

v(z) = 22 + vzt + vea® 4 vga®,

with 3 different sets of the coefficients vy, v and wvsg representing small and large perturbations on the
harmonic oscillator. The substitution transforming the infinite interval (—oo, 00) to [—1, 1] employed in the
previous section contains an optimization parameter « > 0. The effect of « is observed in the numerical
results presented below. First, we noticed that by taking 0 < o < 1 the accuracy of the method increases
when we take same number N. We tried various values for « in order to determine an optimum one.
We observed that the optimal value for o which gives the most accurate results is 0.3 < a < 0.4. For
comparison purposes, we used the same values of the coefficients vy, vg and vg in both Chebyshev and
Legendre pseudospectral methods.

In Tables 1-3, we give the computed eigenvalues of v(z) = 22 + vyz?* with vy = 0.1,1, and 5, with both
Chebyshev and Legendre pseudospectral methods. Similarly, in Tables 4-6 and Tables 7-9 we present the
eigenvalues for v(z) = 22 + vgz® and v(x) = 22 + vg2® with vg = 0.1,1,5 and vg = 0.1, 1, 5, respectively.



Inci M. Erhana, Saeida M. Wlieb, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 66-80.

Table 1: Eigenvalues of v(z) = z° + 0.1z* with Chebyshev EX and Legendre EX pseudospectral methods for a = 1;0.3 and 0.4.

[N[i] EC(a=1) | BFla=1) [E(@=03) [ EF(a=03) [ EC(a =04) | EF(a =04) |
25 [ 1] 0.77821814 | 1.06523087 | 1.06528551 | 1.06528551 | 1.06528550 | 1.06528551
2 | 2.45684459 | 3.30572422 | 3.30687201 | 3.30687201 | 3.30687174 | 3.30687201
3| 5.23643426 | 5.73925266 | 5.74795927 | 5.74795909 | 5.74795585 | 5.74795909
4 | 10.07118779 | 8.32476701 | 8.35267783 | 8.35267668 | 8.35264842 | 8.35267552
5 | 17.00870826 | 11.09039221 | 11.09859562 | 11.09860131 | 11.09840147 | 11.09859147
35 [ 1] 0.77868548 | 1.06528779 | 1.06528551 | 1.06528551 | 1.06528550 | 1.06528551
2 | 2.45834074 | 3.30685123 | 3.30687201 | 3.30687201 | 3.30687174 | 3.30687201
3| 5.23855288 | 5.74717374 | 5.74795927 | 5.74795927 | 5.74795589 | 5.74795927
4 | 10.07335633 | 8.34540267 | 8.35267783 | 8.35267783 | 8.35264880 | 8.35267782
5 | 17.01087644 | 11.06534188 | 11.09859562 | 11.09859563 | 11.09840420 | 11.09859559

Table 2: Eigenvalues of v(x) = z? 4+ z* with Chebyshev EX and Legendre E} pseudospectral methods for o = 1;0.3 and 0.4.

] N \ i \ Ef(a=1) \ El(a=1) \ Ef(a=0.3) \ El(a=0.3) \ EY(a = 0.4) \ El(a=04) ‘
25 | 1| 1.24367760 | 1.39233946 1.39235165 1.39235128 1.39235164 1.39235164
2 | 3.88803404 | 4.64866785 4.64881273 4.64880867 4.64881270 4.64881250
3| 7.09363103 | 8.65427283 8.65504716 8.65505802 8.65504996 8.65504682
4 | 11.69930683 | 13.15550075 | 13.15677362 | 13.15717124 | 13.15680390 | 13.15678589
5 | 18.39805834 | 18.06573383 | 18.05764381 | 18.05920876 | 18.05755743 | 18.05757240
35 | 1| 1.24430863 | 1.39235199 1.39235164 1.39235164 1.39235164 1.39235164
2| 3.89138200 | 4.64881618 4.64881270 4.64881270 4.64881270 4.64881270
3| 7.10071608 | 8.65505865 8.65504996 8.65504997 8.65504996 8.65504996
4 | 11.70835141 | 13.15669679 | 13.15680390 | 13.15680402 | 13.15680390 | 13.15680389
5 | 18.40737547 | 18.05630541 | 18.05755744 | 18.05755764 | 18.05755744 | 18.05755742

Table 3: Eigenvalues of v(x) = 2?2 + 5z* with Chebyshev EX and Legendre EF pseudospectral methods for o = 1;0.3 and 0.4.

(N ]i]| ES(a=1) | EF(a=1) [ E°(«=03) | EF(«=03) [ EZ(a=04) | EF(a=04) |

25 [ 1] 2.00513163 | 2.01833959 | 2.01833601 | 2.01828991 | 2.01834063 | 2.01834071
2 | 6.90747928 | 7.01346291 | 7.01316949 | 7.01291597 | 7.01347884 | 7.01348552
3| 12.98420734 | 13.46760044 | 13.46519639 | 13.46822754 | 13.46772812 | 13.46781824
4 | 19.39380318 | 20.81342486 | 20.81942817 | 20.84355093 | 20.81397885 | 20.81423059
5 | 26.18319353 | 28.87454546 | 29.00067237 | 28.92968083 | 28.87523713 | 28.87251179

35 [ 1] 2.00524431 | 2.01834064 | 2.01834065 | 2.01834069 | 2.01834065 | 2.0183406
2 | 6.90848786 | 7.01347917 | 7.01347917 | 7.01347971 | 7.01347919 | 7.01347919
3| 12.98942369 | 13.46773091 | 13.46773099 | 13.46773250 | 13.46773041 | 13.46773042
4 | 19.41042879 | 20.81397517 | 20.81397358 | 20.81393729 | 20.81396694 | 20.81396676
5

26.21584221

28.87505117

28.87499743

28.87466289

28.87499635

28.87499442
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Table 4: Eigenvalues of v(z) = 22 + 0.12° with Chebyshev Ef and Legendre EF pseudospectral methods for o = 1;0.3 and 0.4.

[N[i] EC(a=1) | BFla=1) [E(@=03) [ EF(a=03) [ EC(a =04) | EF(a =04) |
25 [ 1] 0.82136037 | 1.10913158 | 1.10908704 | 1.10908493 | 1.10908708 | 1.10908741
2 | 2.59735307 | 3.59673752 | 3.59603643 | 3.59600962 | 3.59603692 | 3.59603941
3| 542573191 | 6.64912266 | 6.44438870 | 6.64423837 | 6.64439171 | 6.64439256
4 | 10.23766105 | 10.25553004 | 10.23786735 | 10.23755840 | 10.23787372 | 10.23776622
5 | 17.14686086 | 14.33495987 | 14.30710440 | 14.30905999 | 14.30704008 | 14.30612198
35 [ 1] 0.82213901 | 1.10907701 | 1.10908708 | 1.10908708 | 1.10908708 | 1.10908708
2| 259998114 | 3.59592271 | 3.59603692 | 3.59603697 | 3.59603692 | 3.59603692
3| 5.42063941 | 6.64373424 | 6.64439171 | 6.64439222 | 6.64439171 | 6.64439168
4 | 10.24177732 | 10.23548559 | 10.23787372 | 10.23787711 | 10.23787372 | 10.23787326
5 | 1715099475 | 14.30209050 | 14.30704004 | 14.30705410 | 14.30704005 | 14.30703642

Table 5: Eigenvalues of v(x) = 22 4 2% with Chebyshev EX and Legendre E} pseudospectral methods for o = 1;0.3 and 0.4.

] N \ 1 \ Ef(a=1) \ El(a=1) \ Ef(a=0.3) \ El(a=0.3) \ EY(a = 0.4) \ El(a=04) ‘

25 | 1| 1.34804349 | 1.43562558 1.43562823 1.43558113 1.43562447 1.43561421
2 | 4.53988151 | 5.03347855 5.03325961 5.03247659 5.0339510 5.03333064
3| 8.58481692 | 9.96748576 9.94661527 9.95858376 9.96662356 9.96653816
4 | 13.57703878 | 15.99435165 | 15.97578910 | 15.95052610 | 15.98948891 | 15.99069217
5 | 20.12211425 | 22.92784888 | 22.86784451 | 22.84082832 | 22.91056041 | 22.92124380

35 | 1| 1.34888050 | 1.43562563 1.43562469 1.43562568 1.43562462 1.43562466
2 | 4.54486603 | 5.03340355 5.0339666 5.03340564 5.03339594 5.03339632
3| 8.59888479 | 9.96665256 9.96662637 9.96667250 9.96662200 9.96662421
4 | 13.60123088 | 15.98949774 | 15.98945494 | 15.98955950 | 15.98944078 | 15.98944883
5 | 20.15213249 | 22.90999893 | 22.91016767 | 22.90978486 | 22.91018039 | 22.91018978

Table 6: Eigenvalues of v(x) = 22 + 52% with Chebyshev EX and Legendre EF pseudospectral methods for o = 1;0.3 and 0.4.

(N ]i]| ES(a=1) | EF(a=1) [ E°(«=03) | EF(«=03) [ EZ(a=04) | EF(a=04) |

25 [ 1] 1.90917691 | 1.91245513 | 1.91128342 | 1.91085538 | 1.91243877 | 1.91238806
2 | 6.93892856 | 6.96089620 | 6.95341081 | 6.95314702 | 6.96078634 | 6.96070105
3 | 14.07706707 | 14.16947735 | 14.16134290 | 14.18357771 | 14.16930401 | 14.17155146
4 | 22.73502342 | 23.04369447 | 23.19954684 | 23.31496132 | 23.04540916 | 23.06414338
5 | 32.42847415 | 33.28107701 | 34.07590753 | 34.26916982 | 33.29729901 | 33.37039412

35 [ 1] 1.90923202 [ 1.91245379 [ 1.91246042 | 1.91248042 | 1.91245381 | 1.91245304
2 | 6.93931952 | 6.96085722 | 6.96092740 | 6.96109653 | 6.96085699 | 6.96085129
3 | 14.07885754 | 14.16910270 | 14.16958004 | 14.17040873 | 14.16909876 | 14.16907771
4 | 22.74167405 | 23.04155561 | 23.04331861 | 23.04489094 | 23.04152663 | 23.04151125
5

32.44902932

33.27303422

33.27378287

33.26561440

33.27289621

33.27331610
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Table 7: Eigenvalues of v(z) = 22 + 0.12® with Chebyshev Ef and Legendre EF pseudospectral methods for o = 1;0.3 and 0.4.

[N [i[ EP(a=1) | EFfa=1) [E°(@=03) [ EF(a=03) | ES(a=04) [ EF(a=04) |
N =25 1] 090040430 | 1.16881854 | 1.16899756 | 1.16913690 | 1.16897047 | 1.16894127
2 | 2.86499847 | 3.93821953 | 3.93990939 | 3.94098877 | 3.93972209 | 3.93945483
3| 5.81131004 | 7.63178440 | 7.64054004 | 7.64485274 | 7.63995660 | 7.63859306
4| 10.60557592 | 12.24915931 | 12.28114575 | 12.28950933 | 12.28121949 | 12.27622222
5 | 1746496405 | 17.66611997 | 17.74989850 | 17.73603399 | 17.76146648 | 17.74875867
N =35 ] 1] 0.901189675 | 1.16896057 | 1.16897056 | 1.16897315 | 1.16897045 | 1.16897080
2 | 2.87053538 | 3.93966773 | 3.93972209 | 3.93974585 | 3.93972136 | 3.93972436
3| 5.82033202 | 7.63985744 | 7.63995081 | 7.64007691 | 7.63994849 | 7.63996323
4] 10.61569369 | 12.28152126 | 12.28116835 | 12.28164349 | 12.28116774 | 12.28122019
5 | 1747530759 | 17.76457982 | 17.76117289 | 17.76247695 | 17.76121363 | 17.76135008

Table 8: Eigenvalues
0.4.

of v(x) = 2* + 2® with with Chebyshev Ef and Legendre EF pseudospectral methods for a = 1;0.3 and

| EC(a=1) | EF(a=1) [ ES(@=03) | EE(a=03) [ E€(a=04) | EF(a=04) |

[ N~ [
N =251 145443154 | 1.49097356 1.49164297 1.49216006 1.49097978 1.49086529
2 | 5.16194558 | 5.36831059 5.37097110 5.37213067 5.36846606 5.36724388
3 | 10.33082783 | 10.99095419 | 10.98828972 | 10.97822409 | 10.99224891 | 10.98468049
4 | 16.63046206 | 18.17871483 | 18.09571790 | 18.00542654 | 18.18568101 | 18.15180974
5 | 23.91095664 | 26.70030474 | 26.27554829 | 25.93402071 | 26.73006112 | 26.62129447
N =35 ]1] 145510986 | 1.49101798 1.49100936 1.49096002 1.49097978 1.49101644
2 | 5.16602825 | 5.36876016 5.36873050 5.36845373 5.36877730 5.36874817
3 | 10.34482556 | 10.99363375 | 10.99374600 | 10.99308585 | 10.99373476 | 10.99357409
4 | 16.66484594 | 18.19062967 | 18.19210062 | 18.19227448 | 18.19109499 | 18.19039319
5 | 23.97352728 | 26.74169159 | 26.75085878 | 26.76228292 | 26.74345735 | 26.74099783

Table 9: Eigenvalues
and 0.4.

of v(z) = x? + 52° with with with Chebyshev Ef and Legendre EF pseudospectral methods for o = 1;0.3

| E¢(a=1) [ Bl(a=1) [ ES(a=03) | EF(a=03) [ E°(a =04) | EF(a =0.4) |

N i
N =25 [ 1] 1.88703727 [ 1.88737455 | 1.88160102 | 1.88052064 | 1.88719192 [ 1.88631521
2 | 7.00825824 | 7.01018966 | 6.98460727 | 6.98416575 | 7.00966632 | 7.00541507
3 | 14.66930090 | 14.67622047 | 14.67627429 | 14.70828891 | 14.67948901 | 14.67272087
4 | 24.51315063 | 24.53428274 | 24.88139816 | 25.04460675 | 24.56795683 | 24.58737554
5 | 36.20185978 | 36.26315566 | 38.12924093 | 38.93640760 | 36.44855707 | 36.64593094
N =35[1] 1.88704900 | 1.88748848 | 1.88770418 | 1.88791810 | 1.88748206 | 1.88746088
2 | 7.00833002 | 7.01093701 | 7.01255689 | 7.01413864 | 7.01089533 | 7.01071889
3 | 14.66958128 | 14.67928516 | 14.68746710 | 14.69506790 | 14.67911762 | 14.67816555
4| 24.51407592 | 24.54405987 | 24.57308431 | 24.59775636 | 24.54354400 | 24.53947908
5 | 36.20462164 | 36.28693355 | 36.35470965 | 36.40150930 | 36.28593542 | 36.27237435

8. Conclusion

The Schrodinger equation for anharmonic oscillator studied in this paper is a originally defined on the
infitine interval (—oo,00). Therefore, it is natural to propose a pseudospectral method based on Hermite
polynomials. Also, one can use a substitution which transforms the interval to (0,00) and propose pseu-
dospectral scheme based on Laguerre polynomials. On the other hand, the numerical calculations presented
in the previous section show that the problem can be also treated via pseudospectral methods based on
Chebyshev and Legendre polynomials. This approach provides a different aspect for the use pseudospectral
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methods with Chebyshev and Legendre polynomials which are usually not considered very often since most
of the one dimensional Schrédinger equations are defined on infinite intervals.

Numerical results also show the benefit of using an optimization parameter which improves the accuracy

with smaler size matrices. However, the choice of an optimal value for this parameter is not theoretically
verified and one should determine this optimal value only experimentally.
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