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Abstract. This research studies some important conditions for the existence
of a solution for a boundary value problem with the Mittag-Leffler kernel. Our
results are based on α− φ-Geraghty type contractive mapping.

1. Introduction

Recently, the calculus of fractional derivatives has been considered an essential
tool both in mathematics and in applications. That discussed and utilized in the
modeling of many physical and chemical phenomena and engineering (see, for ex-
ample, [1–7,12,13,18,19,21,22]).
The Caputo-Fabrizio is a type of derivative that was proposed by some authors
in [8, 9, 15,17].
�An important subject that was presented by Atangana and Koca in the paper pre-
sented in Chaos Soliton and Fractal where they discussed the solution of equation
CF
t Dα

0 y(t) = y and said that it is a special function but an exponential. To solve
these defects, Atangana and Baleanu suggested a corrected version of a deriva-
tive without a singular kernel that satisfies the issues presented against that of
Caputo-Fabrizio [10,11]. This derivative is a well-known generalized Mittag-Leffler
function.
In this study the following problem

ABC
ς D

α
0 η(ς) + a(ς)f(t, η(ς)) = 0, ς ∈ [0, 1], 1 < α ≤ 2(1.1)

η′(0) = η(1) = 0,(1.2)

will be studied, where ABC
ς D

α
0 is the Atangana-Baleano derivative in the sense of

Caputo, f : [0, 1]×R+ → R+ is a continuous and a : [0, 1] → R is a continuous with
a(0) = 0. The sufficient conditions for the existence of the solution to the problem
will be studied. This will be done by use of α − φ−contraction mapping and a
generalization of α − φ− Geragty contraction mapping introduced by Karapinar
in [14].
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2. Preliminaries

Definition 2.1. Let f ∈ H1(a, b), the fractional derivative (Atangana-Baleano
derivative in Caputo sense) It is expressed as:

ABC
ς D

α
a (f(ς)) =

B(α)

1− α

∫ ς

a

f ′(ϱ)Eα

[
−α

(ς − ϱ)α

1− α

]
dϱ,

where B is normalized function that has similarly properties with Caputo and
Fabrizio suggested in their derivative.

Definition 2.2. The fractional integral associated with the Atangana-Baleano is
defined by:

AB
ςI

α
a (f(ς)) =

1− α

B(α)
f(ς) +

α

B(α)Γ(α)

∫ ς

a

(ς − ϱ)α−1f(ϱ)dϱ.

Remark 2.3. As it is defined in [15], if n ≥ 1, α ∈ [0, 1] and f (n)(ς) ∈ H1(a, b) the
fractional derivative ABC

ς D
α+n
a f(ς) of order α+ n can be defined by

(2.1) ABC
ς D

α+n
a f(ς) :=ABC

ς Dα
aD

nf(ς).

Recently, Some generalization of the α− φ−Geraghty contraction mapping (see
[16].) were introduced in [14]. We recall some basic concepts and materials of this
subject that we need to use in our proofs.
Let Ψ be the class of φ : R+ → R+ with the following properties:

(a) φ is nondecreasing;
(b) φ(ϱ+ ς) ≤ φ(ϱ) + φ(ς);
(c) φ is continuous;
(d) φ(ς) = 0 ⇔ ς = 0,

and let Φ be the class of ϕ : R+ → R+ with the following properties:
(i) ϕ is increasing,
(ii) ∀ x > 0, ϕ(x) < x,
(iii) β(x) = ϕ(x)

x ∈ F,

where F is a class of β : R+ → [0, 1) with the following properties:

lim
n→∞

β(ςn) = 1 implies lim
n→∞

ςn = 0.

Including, ϕ(ς) = µς, with 0 ≤ µ < 1, and ϕ(ς) = log(1 + ς) belong to Φ.

Definition 2.4. Assume that T : X → X and α : X ×X → R. T is α-admissible
if

α(ς, ϱ) ≥ 1 ⇒ α(Tς, Tϱ) ≥ 1,

and T is triangular α-admissible if

α(ς, ϑ) ≥ 1, α(ϑ, ϱ) ≥ 1 ⇒ α(ς, ϱ) ≥ 1.

Definition 2.5. [14] Let α : X ×X → R ((X, d) a metric space). T : X → X is
said to be α−φ-Geraghty contraction type if ∃ β ∈ F with the following properties:

(2.2) α(ς, ϱ)φ(d(Tς, Tϱ)) ≤ β(φ(d(ς, ϱ)))φ(d(ς, ϱ)),

where φ ∈ Ψ.
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Theorem 2.6. [20] Let T : X → X ( (X, d) is a complete metric space) be an
α−φ−contractive and α−admissible on X with α(ς0, T ς0) ≥ 1 for ς0 ∈ X. If ςn is a
sequence in X with α(ςn, ςn+1) ≥ 1 and ςn → ς for some ς ∈ X, Then α(ςn, ς) ≥ 1.
Then, T has a fixed point.

Theorem 2.7. [14] Let (X, d) be complete, T : X → X be a continuous α −
φ−Geraghty contractive and triangular α−admissible with α(ς0, T ς0) ≥ 1 for some
ς0 ∈ X. Then T has a fixed point ς∗ ∈ X, and {Tnς0} → ς∗.

3. The green function

Lemma 3.1. The problem (1.1)-(1.2) is equivalent with the following equation:

(3.1) η(ς) =

∫ ς

0

G(ς, ϱ)a(ϱ)f(ϱ, η(ϱ))dϱ,

where

(3.2) G(ς, ϱ) =


− [(ς − ϱ)α−1 − (1− ϱ)α−1]

B(α− 1)Γ(α− 1)
, ϱ ≤ ς

(2− α)

B(α− 1)
+

(1− ϱ)α−1

B(α− 1)Γ(α− 1)
, ϱ ≥ ς.

Proof. Let β = α− 1, then equation (1.1) changes to the equation

(3.3) ABC
ς D

β+1
0 η(ς) + a(ς)f(ς, η(ς)) = 0.

We consider the boundary value problem
ABC

ς D
β+1
0 η(ς) + g(ς) = 0, ς ∈ [0, 1],(3.4)

η(0)′ = η(1) = 0,(3.5)
where g : [0, 1] → R with g(0) = 0. Appling the Atangana-Baleanu integral of order
β on both side of (3.4) we get

(3.6) η′(ς) = −1− β

B(β)
g(ς)− β

B(β)Γ(β)

∫ ς

0

(ς − ϱ)β−1g(ϱ)dϱ+ C1.

By integrating we obtain

(3.7) η(ς) = −1− β

B(β)

∫ ς

0

g(ϱ)dϱ− β

B(β)

1

Γ(β + 1)

∫ ς

a

(ς − ϱ)βg(ϱ)dϱ+ C1ς + C2,

or
(3.8)
η(ς) = − 2− α

B(α− 1)

∫ ς

0

g(ϱ)dϱ− α− 1

B(α− 1)

1

Γ(α)

∫ ς

0

(ς − ϱ)α−1g(ϱ)dϱ+ C1ς + C2.

From the first boundary condition and the property g(0) = 0 we have
η′(0) = C1 = 0 ⇒ C1 = 0.

Appling the second boundary condition on equation (3.8) we get

η(1) = − 2− α

B(α− 1)

∫ 1

0

g(ϱ)− α− 1

B(α− 1)Γ(α)

∫ 1

0

(1− ϱ)α−1g(ϱ)dϱ+ C2 = 0.

So
C2 =

2− α

B(α− 1)

∫ 1

0

g(ϱ)dϱ+
α− 1

B(α− 1)Γ(α)

∫ 1

0

(1− ϱ)α−1g(ϱ)dϱ.

R. Akbari, H. Afshari, A. Ahmadkhanlu, Adv. Theory Nonlinear Anal. Appl. 8 (2024), 17–24. 19



Thus we have

η(ς) = − 2− α

B(α− 1)

∫ ς

0

g(ϱ)dϱ− α− 1

B(α− 1)

1

Γ(α)

∫ ς

0

(ς − ϱ)α−1g(ϱ)dϱ

+
(2− α)

B(α− 1)

∫ 1

0

g(ϱ)dϱ+
(α− 1)

B(α− 1)Γ(α)

∫ 1

0

(1− ϱ)α−1g(ϱ)dϱ

= − 2− α

B(α− 1)

∫ ς

0

g(ϱ)dϱ− 1

B(α− 1)Γ(α− 1)

∫ ς

0

(ς − ϱ)α−1dϱ

+
(2− α)

B(α− 1)

∫ 1

0

g(ϱ)dϱ+
1

B(α− 1)Γ(α− 1)

∫ 1

0

(1− ϱ)α−1dϱ

=

∫ 1

0

G(ς, ϱ)g(ϱ)dϱ.

□

Lemma 3.2. For the mentioned G(ς, ϱ), the following conditions hold
(1) G(ς, ϱ) ≥ 0 for ς, ϱ ∈ [0, 1],
(2) G(ς, ϱ) ≤ 2−α

B(α−1) +
(1−ϱ)α−1

Γ(α−1)B(α−1) for all ς, ϱ ∈ [0, 1],
(3) G(ς, ϱ) ≥ (1− ςα−1) (1−ϱ)α−1

Γ(α−1)B(α−1) for all ς, ϱ ∈ [0, 1].

Proof. (1) For ϱ ≤ ς we get (1 − ϱ)α−1 − (ς − ϱ)α−1 ≥ 0, So G(ς, ϱ) ≥ 0.
Moreover clearly, for ϱ ≥ ς, G(ς, ϱ) ≥ 0.

(2) Let ϱ ≤ ς, then ∂G
∂ς = −(α−1)(ς−ϱ)α−2

Γ(α−1)B(α−1) = 0 implies ϱ = ς, so G(ς, ϱ) ≤
(1−ϱ)α−1

Γ(α−1)B(α−1) . Moreover clearly, for ϱ ≥ ς we obtain G(ς, ϱ) ≤ 2−α
B(α−1) +

(1−ϱ)α−1

Γ(α−1)B(α−1) . Hence G(ς, ϱ) ≤ 2−α
B(α−1) +

(1−ϱ)α−1

Γ(α−1)B(α−1) .
(3) For ϱ ≤ ς we get

G(ς, ϱ) =
(1− ϱ)α−1 − (ς − ϱ)α−1

B(α− 1)Γ(α− 1)
≥ (1− ϱ)α−1 − ςα−1(1− ϱ)α−1

B(α− 1)Γ(α− 1)

= (1− ς)α−1 (1− ϱ)α−1

B(α− 1)Γ(α− 1)
.

Moreover for s ≥ ς we obtain

G(ς, ϱ) =
2− α

B(α− 1)
+

(1− ϱ)α−1

Γ(α− 1)B(α− 1)

≥ (1− ϱ)α−1

Γ(α− 1)B(α− 1)

≥ (1− ς)α−1 (1− ϱ)α−1

Γ(α− 1)B(α− 1)

□

4. Existence Results

Consider the following hypotheses:
H0: Considering the cone P = {η(ς) : η(ς) ∈ R+, ς ∈ [0, 1]};

R. Akbari, H. Afshari, A. Ahmadkhanlu, Adv. Theory Nonlinear Anal. Appl. 8 (2024), 17–24. 20



H1: ∃ ξ : R2 → R+ and φ ∈ Ψ with
|a(ς)f(ς, a)− a(ς)f(ς, b)| ≤ λφ(|a− b|),

for 0 ≤ ς ≤ 1 and a, b ∈ R+ with ξ(a, b) ≥ 0, where λ < B(1−α)αΓ(α−1)
(2−α)Γ(α−1)+1 ;

H2: ∃ η0 ∈ C([0, 1]) with ξ
(
η0(ς),

∫ 1

0
G(ς, ϱ)a(ϱ)f(ϱ, η0(ϱ))dϱ

)
≥ 0, ς ∈ [0, 1];

H3: for ς ∈ [0, 1] and η, ζ ∈ C([0, 1]), ξ(η(ς), ζ(ς)) ≥ 0 implies
ξ
(∫ 1

0
G(ς, ϱ)a(ϱ)f(ϱ, η(ϱ))dϱ,

∫ 1

0
G(ς, ϱ)a(ϱ)f(ϱ, ζ(ϱ))dϱ

)
≥ 0;

H4: if {ηn} is a sequence in C([0, 1]) with ηn → η and ξ(ηn, ηn+1) ≥ 0, then
ξ(ηn, η) ≥ 0;

Theorem 4.1. Assume that H1-H4 hold. Then, (1.1)-(1.2) has at least one
solution.

Proof. We define T : P → P by

(4.1) Tη(ς) =

∫ 1

0

G(ς, ϱ)a(ϱ)f(ϱ, η(ϱ))dϱ.

By using Lemma 3.1 η ∈ C([0, 1]) is a solution of (1.1)-(1.2) if η ∈ C([0, 1]) is a
fixed point of the operator (4.1). Now let η, ζ ∈ C([0, 1]) with ξ(η(ς), ζ(ς)) ≥ 0 for
ς ∈ [0, 1]. By using H1, we have

|Tη(ς)− Tζ(ς)| ≤
∣∣∣ ∫ 1

0

G(ς, ϱ)a(ϱ)[f(ϱ, η(ϱ))− f(ϱ, ζ(ϱ))]dϱ
∣∣∣

≤ λ

∫ 1

0

|G(ς, ϱ)|φ(|η(ϱ)− ζ(ϱ)|)dϱ

≤ λφ(∥η − ζ∥∞)
(2− α)Γ(α− 1) + 1

B(1− α)αΓ(α− 1)

≤ φ(∥η − ζ∥∞).

Thus, for each η, ζ ∈ C([0, 1]) with ξ(η(ς)− ζ(ς)) ≥ 0 for all ς ∈ [0, 1], we have
∥Tη − Tζ∥∞ ≤ φ(∥η − ζ∥∞).

We define α : C([0, 1])× C([0, 1]) → R+ by

(4.2) α(η, ζ) =

{
1 ξ(η(ς), ζ(ς)) ≥ 0 for all ς ∈ [0, 1]
0 otherwise.

Hence, α(η, ζ)d(Tη, Tζ) ≤ φ(d(η, ζ)) for all η, ζ ∈ C([0, 1]) . So F is an α −
φ−contractive mapping. By H3, we obtain

α(η, ζ) ≥ 1 ⇒ φ(η(ς), ζ(ς)) ≥ 0 ⇒ φ(Tη(ς), T ζ(ς)) ≥ 0 ⇒ α(Tη, Tζ) ≥ 1,

for η, ζ ∈ C([0, 1]). Hence, T is α−admissible. From H2, there exists η0 ∈ C([0, 1])
with α(η0, Tη0) ≥ 1.
Finally, from H4 and using Theorem 2.6, we deduce the existence of η∗ ∈ C([0, 1])
with η∗ = Tη∗. Hence, u∗ is a solution. □
Our other result obtain from Theorem 2.7. First consider the condition.

H′1: ∃ ξ : R2 → R with ξ(a, b) ≥ 0 such that

|f(ς, a)− f(ς, b)| ≤ λ log(|a− b|+ 1), where, λ <
B(1− α)αΓ(α− 1)

(2− α)Γ(α− 1) + 1
;
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Theorem 4.2. Assume f : [0, 1] × R → R is continuous and H′1, H2-H4 hold,
then the problem (1.1)-(1.2) has at least one solution.

Proof. We consider the operator (4.1) again. Let η, ζ ∈ C([0, 1]) such that ξ(η(ς), ζ(ς)) ≥
0 for ς ∈ [0, 1], we get

d(Tη, Tζ) ≤
∣∣∣ ∫ 1

0

G(ς, ϱ)a(ϱ)[f(ϱ, η(ϱ))− f(ϱ, ζ(ϱ))]dϱ
∣∣∣

≤
∣∣∣ ∫ 1

0

G(ς, ϱ)λ log(|η(ϱ)− ζ(ϱ)|+ 1)dϱ
∣∣∣

≤ log(∥η − ζ∥∞ + 1)λ

∫ 1

0

|G(ς, ϱ)dϱ|

≤ λ log(∥η − ζ∥∞ + 1)

(
B(1− α)αΓ(α− 1)

(2− α)Γ(α− 1) + 1

)
≤ log(∥η − ζ∥∞ + 1) = log(d(η, ζ) + 1),

which yields that

log(d(Tη, Tζ)+1) ≤ log(log(d(η, ζ)+1)+1) =
log(log(d(η, ζ) + 1) + 1)

log(d(η, ζ) + 1)
log(d(η, ζ)+1)

Let φ(x) = log(x + 1) and β(x) = φ(x)
x . It is clear, φ : R+ → R+ is subadditive,

nondecreasing, continuous function. In addition φ is positive in (0,∞) and φ(0) =
0. Morever φ(x) < x for any β ∈ F.
Thus for all η, ζ ∈ C([0, 1]) with ξ(η(ς), ζ(ς)) ≥ 0 with ξ(η(ς), ζ(ς)) ≥ 0 for ς ∈ [0, 1],
we get φ(d(Tη, Tζ)) < β(φ(d(η, ζ)))φ(d(η, ζ)).
We consider the function (4.2). Then for η, ζ ∈ C([0, 1]), we get

α(η, ζ)d(Tη, Tζ) < β(d(η, ζ))d(η, ζ).

Obviously, α(η, ζ) = 1 and α(ζ, w) = 1 implies α(η, w) = 1 for η, ζ, w ∈ C([0, 1]).
If α(η, ζ) = 1 for all η, ζ ∈ C([0, 1]), then ξ(η(ς), ζ(ς)) ≥ 0. From (H3) we get
ξ(Tη(ς), T ζ(ς)) ≥ 0, and so α(Tη, Tζ) = 1. Thus T is triangular admissible.
From (H2) there exists η0 ∈ C([0, 1]) such that α(η0, Tη0) = 1.
By (H5), we find that, for point x of sequence {ηn} ∈ C([0, 1]) with α(ηn, ηn+1) = 1,
limn→∞ α(ηn, η) = 1.
By applying theorem 2.7, T has a fixed point in C([0, 1]) and this is solution of
(1.1).

□

Example 4.3. Let φ(r) = r, ξ(x, z) = xz,
ηn(ς) =

ς

n2 + 1
. Consider f : I×C([0, 1]) → [−1, 1] and the bondary value problem

(4.3) D
3
2

Dς
η(ς) + ςf(ς, η(ς)) = 0,

where f(ς, η(ς)) = sin η(ς), ς ∈ I, also,
η′(0) = ζ(1) = 0,

So
|ςf(ς, η(ς))− ςf(ς, ζ(ς))| ≤ λ| sin η(ς)− sin ζ(ς)| ≤ λ|η(ς)− ζ(ς)|,
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when ς ∈ I and η(ς), ζ(ς) ∈ [−1, 1] with ξ(η(ς), ζ(ς)) ≥ 0. If η0(ς) = ς, then

ξ
(
η0(ϱ),

∫ 1

0

G(ς, ϱ)ςf(ς, η0(ϱ))dϱ
)
≥ 0.

for ϱ ∈ I. Also,
ξ(y(ϱ), z(ϱ)) = y(ϱ)z(ϱ) ≥ 0 implies that

ξ(

∫ 1

0

G(ς, ϱ)ςf(ϱ, y(ϱ))dϱ,

∫ 1

0

G(ς, ϱ)ςf(ϱ, z(ϱ))dϱ) ≥ 0;

It is obviously that condition (H4) in Theorem (4.1) hold. hence, the all of condi-
tions Theorem (4.1) satisfied. So from Theorem (4.1) the problem (1.1)-(1.2) has
at least one solution.
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