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Abstract

A novel probability model with bounded support is introduced. The formulation of this new probability
model is based on inverting the Slashed Pareto distribution. This new distribution has the merit of being
very simple and not involving any complex mathematical function in its construction. Some interesting
properties like moments, skewness and kurtosis, unimodality, L-Moments, L-skewness and L-kurtosis would
be explored in detail. Various Survival properties including survival function, hazard rate function and
mean residual life(MRL) like have been given. For estimating the parameters contained in the new model,
methods like Method of Moments (MOM) and Maximum Likelihood Estimation (MLE) have been used.
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1. Introduction

Although among the many alternatives and generalizations [2], It’s fair to say that beta distributions
represent a major family of continuous distributions with support defined on (0, 1). The probability density
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function (pdf) of beta distribution with parameters m > 0 and n > 0 is given by:

1

m—1/1 _ . \n—1
B(m,n)x (1—x)" 0<z<l, (1)

g(x) =
with B(,-) is the beta function. The beta distribution is reasonably good in many ways but with short-
comings like its cumulative distribution function (CDF) is an incomplete beta function and hence as a
consequence its quantile function as well. In addition to beta distribution, so many new models having
bounded support on unit interval have been studied in the literature. Jones [7] Kumaraswamy distribu-
tion, the McDonalds generalized beta distribution [8], Gordy’s confluent hypergeometric distribution [4],
the Gauss hypergeometric distribution discussed by Armero and Bayarri [3], the transformed gamma distri-
bution [6] and the LogLindley distribution proposed by Gémez et al. [5] are recent developments in this field
of literature. Among all the models involve special functions in their construction except Kumaraswamy
and LogLindley distribution.

Keeping the above shortcomings in mind, a new two-parameter distribution with bounded domain is
being proposed here that can be considered another choice to beta, Kumarswamy and Log-Lindley distri-
bution. Besides involving only two parameters, it has benefit over other models as it doesn’t contain any
special functions. This distribution is obtained by taking the inverse of a random variable (rv) following
slashed Pareto distribution.

The rest of the paper is structured as: The Section 2 explored the derivation of proposed distribution
along with unimodality and its nested models. Distributional properties like distribution function, survival
function, hazard rate function etc have been presented in Section 3 followed by discussion on order statistics
in Section 4. Moments and other associated properties have been discussed in Section 5. For estimation of
parameters of the model, MOM and MLE have been presented in section 6. The statistical stability of the
proposed model were checked by Monte Carlo simulation process in Section 7. In the penultimate section,
the numerical illustration were presented. Lastly, Section 9 ends with work some remarks.

2. Inverse-Slashed Pareto Distribution

A rv Y is said to follow Inverse-Slashed Pareto distribution if its pdf is given by

f(y;a,q)Zquqa (y* ' =9y, 0<y<la>0,¢>a (2)
Henceforth, a rv following pdf (2) will be denoted by Y ~ ISP(«, ¢). It is pertinent to note mention here that
for & > ¢ it has the same density function, that is called the problem of identifiability. For removing this
problem we consider ¢ > a. The pdf (2) can be obtained by taking inverse of Slashed Pareto distribution
which has been derived in Theorem 2.1.

Theorem 2.1. If a rv U ~ U(0,1), X is another rv following Pareto distribution with the notation X ~

Par(a,1) and Z = 2 is a Slashed Pareto random variate, Then rvY = % is an Inverse Slashed Pareto

Ua
distribution whose pdf is given in (2).

zud

Proof. By taking into account that the cumulative distribution function (cdf) Fx(z)=, (ﬂ)q [1 — (4 )O‘] dzx,

then using Jacobian transformation method such that |J| = y%, the result follows after some computations.
O

The pdf (2) of the proposed model can be derived analytically as well.
Let fi(y) and fa(y) be two integrable functions over support [0,1] such that fi(y) > fo(y) ¥V y € [0,1], then

fi(y) — f2(y) is also integrable. Moreover if fol(fl (y) — f2(y))dy = k then M is always a density over
support [0,1]. Therefore, choosing f1(y) = y*~! and fo(y) = y?~!, ¢ > a such that k = % and after doing
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Figure 1: Analytical Genesis

some easy mathematical simplifications, Inverse-Slashed Pareto distribution (2) can be derived analytically.
The first derivative of pdf (2) is:

A = 2L [ =1y (g - 1y

this means that the pdf (2) is unimodal with maximum at:

e f0<a<1,0<q<1& always ¢ > «, then

a—1|a«
Ymax = -1 .

o Ifa>1,qg>1& always ¢ > «, then

a—l]qa

Ymazx = |:q_1

e f0<a<1landq>1andq> «, then ypq =0.

Figure 2 shows the pdf plot of proposed model for different choices parameters a and gq.

Figure 2: pdf plot of ISP(«, ¢) distribution for different values of o and gq.



Ishfag Ahmad Shah et. al., Adv. Theory Nonlinear Anal. Appl. 7 (2023), 14-29. 17

Theorem 2.2. If X ~ISP(«,q), then Y = X% ~ ISP(%, ).
Proof. 1t is straightforward to prove this result. O

In the following subsection, we will show some existing distributions appears to be particular cases of
ISP(e, q) by choosing suitable value for parameters of the model.

2.1. Nested Models of ISP(«, q) Distribution
1. For a =1 in pdf (2), then we get a new density whose pdf is:

q B
f(y;Q)Zﬁ(l—yq D, ¢>0, 0<y<l

2. For ¢ — « in pdf (2), and after doing some easy simplification then we get a new density function as:
flyia) = —a® (y* ) log(y), a>0, 0<y<L

3. For ¢ — oo in pdf (2), the new density function is obtained with the pdf as:

fly,0) =ay® ', a>0, 0<y<L.

3. Distributional Properties

1. The CDF of the ISP(«, ¢) is given by

Fy(y;aaQ):%, O<y<l1l, a>0 g>a. (3)

2. The Survival function of the ISP(a, q) is given by

o q
Syia,g)=1- " gcy<1, a>0, ¢>a (4)
q—«

3. The Hazard Function of the ISP(«, ¢) is given by

fy; e, q)
hy;nq) =47~
( ) Sy (y; @, q)
aq [y~ — y]
= , O<y<l1l, a>0, g>a.
ylo(y? —1) +q (1 —y?)]

The behavior of Survival function and Hazard function have been illustrated in Figure 3 and 4 |,
respectively with different combinations of parameters.

4. For a non-negative continuous rv Y the MRL function is defined as u(y) = E(Y — y|Y > y) and is

calculated by:

(5)

o) = 5 /y Sy,

Considering S(y) = S(y|a,q) = 1 — qyz_;g‘yq, the survival function of the ISP(a, ¢q) distribution, we
have
a(g—a)(—y? +q(y—1)+y)
(g+1)(atq(y*—1)—ay?)
a+1

Note that limy_,o p(yle, q) = m and while as lim,_,; u(y|o, ¢) = 0.

w(yle, q) =
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Figure 3: Plot of Survival function for different choices of parameters.

15

10
|

h(y)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Plot of Hazard function for different choices of parameters.
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Theorem 3.1. The weighted version of ISP(«, q) distribution with weight function W(y) = Y*, s > 0 is

given by

y (a4 s)(qg+ s

fsty) = Lot elats)
q—a

Proof. Since Y ~ ISP(«, q), and it is given that W(y) = Y*. By using the definition of weighted class of

distributions ([9]), the weighted pdf is

(yot =991, 0<y<1 —00<s<o0. (6)

_ W) /)
IO = mw)r v
Now, o
EW(y)] = E[Y"] = GTs)ats) (8)
The required result can be obtained easily by substituting (8) and (2) in (7). O

4. Order Statistics

Consider a sequence Y1,Ys,...,Y, of n independent and identically distributed rv’s, each with CDF
F(y). The pdf of largest order statistics Y, is given by:

Faly) =n [F)]" ' f(y)
ang (4 — ) (25=2)" ()

q—

= , O<y<l, a>0, g>o.
ylg — )

Also, the pdf of smallest order statistics Y(y) is given by:
fily) =n[L = F)]"" f(y)

« n—1
ang (y* —y?) (7“1’3:3@’ - 1) (10)
= , O<y<l, a>0, ¢g>a.
ylg — )
5. Moments and other Associated Properties
5.1. Raw Moments
The " moment ISP(«, ¢) about origin is:
aq
EY)=————7¢]27-—-7.
O = e+ ()

In particular, the first four raw moments of ISP(«v, ¢) can be obtained easily by putting r = 1,2,3,4 in (11)
and are as follows:

o aq
SRS
/ . aq
27+ 2+ 2)
o aq
B =1 3)(at3)
/ o aq
M+ Dla+ 9y
The variance (u2) is obtained as:
p2 =ty — (117)?
1 aq (12)

— (@+2)(q+2) (a+aq+q+12]"
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5.2. Coefficient of Variation
Coefficient of Variation (C.V.) (%) is:

(ot 1)(g + 1>\/ 24 (el ~ )

aq

CV.=

The table (1) contains the information about C.V. for different combinations of parameters.

Table 1: Numerical values of C.V. for different choices of parameters a and ¢

ql| a=1 a=25 a=4 a=06 a=8 a=10 a=12 a=14 a=16
1 10.881917 0.672199 0.6236  0.60092 0.5916  0.1856 0.1543 0.1432 0.12671
2.510.672199 0.430905 0.366414 0.334027 0.3302 0.31299 0.3089 0.2967 0.27539
4 | 0.62361 0.366414 0.29167 0.25173  0.1654  0.2244 0.0827 0.07765 0.0057
6 |0.600925 0.334027 0.2517 0.20518 0.0811 0.1712 0.1160 0.1023 0.1006
8 10.591608 0.320156 0.16535 0.183285 0.1586  0.1023 0.0163 0.0104 0.0102
10 | 0.586894 0.31299 0.22438 0.17129  0.1023  0.0132 0.1206 0.0142 0.0134
12 1 0.56540 0.3028 0.15675 0.16231  0.0163  0.1205 0.1093 0.0875 0.0056
14 | 0.54680 0.291299 0.14321 0.132456 0.0348 0.0419 0.1021 0.0342 0.00312
17 | 0.53020 0.27299 0.13222 0.11678  0.1251  0.0018 0.0952 0.0654 0.0351
19 | 0.53020 0.24098 0.11675 0.104596 0.011789 0.0011 0.07546 0.00239 0.0076

The C.V. Plot has been displayed in figure (5) as function of q by fixing o which verifies that it is decreasing
function of q, i.e as q increases, C.V. decreases. In addition to C.V., we can also find Index of Dispersion(IOD)

Figure 5: C.V. Plot

which is mathematically given by

Var(X) 1
10D = F0 (a+1)(g+1) <(a+2)(q+2) —

aq )
(at+ag+q+1)?)

The numerical values of IOD for taking different values of o and ¢ are displayed in table (2).
Furthermore, The IOD plot has been exhibited in figure (6) with respect to q which shows that IOD is an
increasing function of q.

We can also find Coefficient of Skewness (1) and Measure of Kurtosis (y2) of the ISP(«, g) distribution,
respectively as:

71_#3 72_#4
==, ==
u3 =

The contour plot of both the Skewness and Kurtosis for parameters o and ¢ are shown in Figure 7.
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Table 2: IOD values for various choices of parameters a and ¢
qd a=1 a=25 a=14 a=2~6 a=8 a=10 a=12 a=14 «a=16
1 0.1944 0.1614  0.1556  0.1547  0.1435 0.1235  0.1087  0.09085  0.0768
2.5 1 0.161376  0.0947  0.0767  0.0683  0.0571 0.0431 0.0394 0.0231 0.0134
4 0.1556 0.0767  0.0544 0.0435 0.0342 0.0215 0.0162 0.0098 0.0056
6 0.1547 0.0683  0.0435 0.0309 0.0234 0.0178 0.0078 0.0543 0.0451
8 0.1556 0.0651  0.0389 0.0256  0.0134 0.0100  0.0098 0.0065 0.0035
10 0.1435 0.0636  0.0367  0.0228 0.01133 0.00986 0.8764 0.0061 0.0051
12 0.1345 0.0624 0.03567 0.0221  0.0127  0.0078 0.0123  0.00876  0.0067
14 0.1267 0.0611 0.03178 0.0211  0.0045 0.0023 0.2200 0.021235 0.01156
17 0.1134 0.05646  0.0298 0.0145 0.0134 0.01156 0.0234  0.00034 0.00027
19 0.1056 0.0467  0.0279 0.00934 0.0987 0.01234 0.01139 0.00012 0.00098

cv

Figure 6: 10D Plot

5.8. Geometric Mean
The geometric mean (Gy) of a rv Y ~ ISP(a, q) is:

1
Gy = Elln(Y)] = /0 In(y) £ (y: v, g)dy

_(a+q)
=e g

5.4. Harmonic Mean:
The harmonic mean (Hy) of a ISP(«, q) distribution is:

5.5. L-Moments

To explore the shape of a probability function, L-moments are used. The first L-moment is the mean of
the density function. Explicit higher L-moment formula available. Nevertheless, the general formula for the
rth L-moment (r > 2) is given by:

k

)\kzliz;(—l)’(k;Q>(if1)i(—i+k—1,i+l), (13)

where J(i1,12) = fol Fii(y)(1 — F(y))2 dy. In case of the ISP(«, q) distribution

1 a q\ a q\ 2
o [ (B (e,
0 g—« q—«

|
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(a) Skewness q (b) Kurtosis 1
Figure 7: Plot of Skewness and Kurtosis
Here just the scale measure which is the second L-moment is given by:
aq (20® 4+ 3a + 2aq + q(2g + 3) + 1
o=l a+4(2g+3) +1) a>0,q>0. (14)

(a+1)2a+1)(¢+1)(2¢+1)(a+qg+1)

5.6. L-Skewness:
The L-Skewness denoted by 73 can be obtained as:

T3 = )\—2
5.7. L-Kurtosis:
The L-Kurtosis (74) is defined as:
T4 = )\—2

Contour plot of both L-skewness and L-kurtosis are shown in Figure 8.
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Figure 8: Plot of L-skewness and L-kurtosis

6. Methods of Estimation

6.1. Method of Moments

Moments estimator of parameter « and ¢ of ISP(«, g) can be find out easily by solving

aq

d =t
e = ) (gt 2)

/ O[q
mi1 = =
T a1
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where m1 and ms are first and second sample moments. Solving above system of equations in terms of «
and ¢, the moment estimators obtained are

&= —3mimo — \/(3m1m2 +mq — 4m2)2 — 8m1m2(m1m2 +mq — 2m2) —mq + 4my

, 15
2(m1m2 +my1 — 2m2) ( )

\/m%(mg —1)2 — 8myma(ma + 1) + 16m3 — m1(3ma + 1) + 4mo

1= 2(m1m2 +mq — 2m2)

6.2. Mazimum Likelihood Estimation

The popular method of obtaining estimates is MLE. Consider a random sample of size n from the
ISP(e, q) distribution with pdf (2). The corresponding likelihood function is

Lo, qly) = ( =~ >n2(y°‘_1 —y7h). (17)

-«
q =0

Taking log of (17), we get:

log(L(e, qly)) = nlog(a) + nlogq — nlog(g — a) + Y _log(yf " —yf ™). (18)
=0

The ML Estimates & of a and ¢ of ¢, respectively, can be obtained by solving equations

dlog L dlog L
=0 d = 0.
oa M T
where
OlogL n n vy log(y)
- + —1 -1
e a gq-—a =y Yy
and

dq q q—«

dlogL n n Zn: y9~ 1 log(y)

Unfortunately, above equations are not in explicit forms and therefore a suitable iterative procedure is
needed to get the required estimates numerically.
The second order partial derivatives of (18) are as follows:

FPlgl __n o i (yal log®(y) _ y**~*log*(y) )
o2 a2 (q _ Oé)2 — ya—l _ yq—l (yafl . yq71)2 ’
0?log L _ i log?(y)y®ta _n

0adq = (y1—y*)?  (a—a)¥

Ologl _n_ _m _z": ylog?(y) | y*?log’(y)
dq? ¢ (qg—a)? (yo=1 —ya=1)2 )

1=0

Obtaing the expected Fisher information matrix as

9%log L 9%log L
_F (&£l _F (& eel
Oa? Jad
Jx = 2 * 2a !
_E 0“log L _E 0“log L
0q0a 0q?
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which in approximation can be written ass

9% log L 9% log L ‘
5. . -
oo Jaq B O a,q 0adq 1&,4
LSl S
qo qq 8% log L 9% log L

0q0a ‘d,q 0q? ‘d,q

where & and ¢ are MLE of « and ¢ respectively. Hence, when n is large and under some mild regularity

conditions,
a— & a 0 -1
(5o ) e ((0) )

means approximately distributed, and Jx ! is the inverse of Jx. The above asymptotic normal
distribution is needful for the construction of approximate confidence intervals for the parameters.

where 7 & ?

Generation of Random Numbers

Usually for generating random numbers of any arbitrary distribution, the Inverse CDF technique is used.
However, sometimes due to the implicit form of distribution function of the proposed model, it becomes
cumbersome to generate random numbers by using this technique. In our proposed model we discuss an
alternative way to generate the random variables for ISP(«, ¢). As the proposed model is derived by taking
the inverse of Slashed Pareto distribution, following algorithm can be used to get random numbers of
ISP(e, q):

Step 1: Generate U; and V; (i =1,2,...,n) from U(0,1) independently.

Step 2: Corresponding to each V;, determine X; = (1 — V)=

U;

8
= =

Step 3: Finally generate Y; from

7. Simulation Study

In this section, we perform simulation of the proposed model to evaluate the performance of ML es-
timators & and ¢ in estimating « and ¢, respectively. Simulation was accomplished with the help of R
compuational software (R code of simulation study can be available on request for the reader), and the
number of replications was 10000. The assessment of each point estimate was carried out on the basis of the
average bias and the mean squared error (MSE) for each sample size, whose respective formulas are given

as under: .
1 o
m 2o (A= o).
The average MSE
mo 2
% ; (AZ» - AO) .

We took the sample size of n = 100, 200, 300,400 and consider o« = 0.5, 1.5, 2.5 and 3.5 and ¢ = 4,6. The
simulation results for each parameter oo and ¢ are displayed in Tables 3 and 4, respectively.
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Table 3: Simulation study for « estimates based on MLE

q=4 q=6
« «
a=0.5 n Mean Bias MSE Var n Mean Bias MSE Var
100 0.52012 0.02012 6.00E-05 0.00606 100 0.51495 0.01495 5.00E-05  0.0044
200 0.50825 0.00825 1.00E-05 0.00212 200 0.50684 0.00684 1.00E-05 0.00174
300 0.50527 0.00527 0 0.00131 300 0.50513 0.00513 0 0.00109
400 0.5039  0.0039 0 0.00095 400 0.50354 0.00354 0 8.00E-04
a=15 n Mean Bias MSE Var n Mean Bias MSE Var
100 1.65197 0.15197 0.00151  0.12841 100 1.60789 0.10789 0.00115  0.10384
200 1.59187 0.09187 4.00E-04 0.07235 200 1.54689 0.04689 0.00021  0.04043
300 1.56178 0.06178 0.00017  0.0477 300 1.52799 0.02799 8.00E-05 0.02179
400 1.54817 0.04817 9.00E-05 0.03447 400 1.52102 0.02102 4.00E-05 0.01446
a=25 n Mean Bias MSE Var n Mean Bias MSE Var
100 2.6363  0.1363 0.0027  0.25129 100  2.7518  0.2518  0.00418  0.35425
200 2.63502 0.13502 0.00105 0.19236 200 2.66595 0.16595 0.00123  0.21924
300 2.62413 0.12413 0.00059 0.16105 300 2.62597 0.12597 0.00058  0.15798
400 2.62066 0.12066 0.00038 0.13906 400 2.59389 0.09389 0.00031  0.11604
a=3.5 n Mean Bias MSE Var n Mean Bias MSE Var
100 3.33589 0.16411 0.00362 0.33503 100 3.74219 0.24219 0.00614  0.55502
200 3.35552 0.14448 0.00132 0.24261 200 3.72964 0.22964 0.00224  0.39526
300 3.37479 0.12521 0.00072  0.19942 300 3.70621 0.20621 0.00124  0.32873
400 3.38556 0.11444 0.00048 0.17825 400 3.68676 0.18676 0.00082  0.29159

Based on the results from Simulation study, we can claim that:

e As expected, MSE and Bias for all estimators decreases as sample size increases which confirms the
attainment of stability of estimators.

8. Numerical Illustration

In this section, the applicability of ISP(«, ¢) has been shown by considering two data sets corresponding
to the Households with Access to Safe Drinking Water of the 35 states in 2011 in India. They were extracted
from the Households with Access to safe Drinking Water The proposed distribution has been compared with
following distributions namely:

(i). Beta Distribution (BD):

— a—1l¢1  \6—1
h(y) B’ 1-y)"" apf>0.
(ii). Kumarswamy’s Distribution (KSD):
faly) = aBy* (1 =y™)™, @B >0.
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Table 4: Simulation study for g estimates based on MLE
q=4 q=>0
q q
n mean Bias MSE Var n mean Bias MSE Var
100 5.573071 1.573071 1.417144 139.2537 100  9.60985  3.60985  4.360972 423.1085
200 4.408995 0.408995 0.062122 12.25835 200 7.186886 1.186886 0.467649 92.13032
300 4.216082 0.216082 0.008543 2.516459 300 6.502878 0.502878 0.031402 9.168647
400  4.1522 0.1522  0.003519 1.38453 400 6.393742 0.393742 0.016025 6.255635

n mean Bias MSE Var n mean Bias MSE Var
100 4.289087 0.289087 0.170197 16.93786 100 6.979715 0.979715 1.589365 157.9924
200 4.051729 0.051729 0.008702 1.737991 200 6.260078 0.260078 0.023757 4.684144
300 4.050005 0.050005 0.003806 1.139303 300 6.146147 0.146147 0.008682 2.583469
400 4.014399 0.014399 0.002019 0.807526 400 6.105994 0.105994 0.004652 1.849853

n mean Bias MSE Var n mean Bias MSE Var
100 4.464601 0.464601 0.126949 12.48026 100 6.469776 0.469776 0.250139 24.79569
200 4.148039 0.148039 0.007721 1.522517 200 6.088095 0.088095 0.019621 3.916824
300 4.085444 0.085444 0.003709 1.105363 300 6.020559 0.020559 0.008439 2.531534
400 4.020378 0.020378 0.002063 0.824854 400 6.014956 0.014956 0.004625 1.84985

n mean Bias MSE Var n mean Bias MSE Var
100 4.923461 0.923461 0.095216 8.669718 100  6.59762  0.59762 0.143692 14.01349
200 4.586259 0.586259 0.009753 1.607132 200 6.122012 0.122012 0.017142 3.413757
300 4.450452 0.450452 0.004033 1.007121 300 6.022998 0.022998 0.007958 2.387207
400 4.398152 0.398152 0.002419 0.809229 400 5.989169 0.010831 0.004818 1.927462

(iii). Log-Lindley Distribution (LLD):
fs(y) =o(A+o(X = Dlog)y”™", ¢>0,0<A<1.

Proposed model including the competing ones have been compared by using log-likelihood (LL), Akaike’s
Information Criterion (AIC)[1] and Bayesian information criterion (BIC) [10]. To check the goodness of fit,
empirical distribution function (EDF) goodness-of-fit measures like KolmogorovSmirnov (KS) test statistics,
the Cramervon Mises (CVM) test statistics, and the AndersonDarling (AD) test statistics have been used
and whose definition and formulas are given as under:

Denote the cdf of the fitted model by F, the original data by y1, ..., yas, and the ordered data in increasing
magnitude by y(1, ..., y(ur), then we have

1. KS test statistics: D = max(D*, D7), where

k “
+ I
D _122&‘ W F(ymy) |,
R k—1
D™ = 3 _ET
1225\4‘ (Y()) 7 |

2. CVM test statistics:
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M 2
. 2k — 1 1
2 — J—
W= ; {F W) — =537 120
3. AD test statistics:
M
2 1 . .
A?=—M — MZ [(% — 1) log(F(ym)) + (2m + 1 — 2k)log(1 — F(yu))| -
k=1

Table 5: Model validation criterion of different probabilistic models for dataset-1

Models Estimated Prameters LL AIC BIC
ISP a=3.67362, ¢ = 270.367 19.9994 39.9988 36.8881
BD a=3.35461, $=0.914946 19.8176 39.6352 36.5245
KSD a= 3.43322, 5= 0.922136 19.7934 39.5868 36.4761
LLD A= 27308.5, 0 =3.62441 19.7257 39.4514 36.3407

Table 6: Model validation criterion of different probabilistic models for dataset-2

Models Estimated Prameters LL AIC BIC
ISP a= 3.04388, ¢ =815.987 15.462 30.924 27.8133
BD a= 2.93138, 8 =0.960894 15.3887 30.7774 27.6667
KSD a= 2.95573, = 0.96144 15.3867 30.7734 27.6627
LLD A=35280.6, 0 =3.03259 15.3707 30.7414 27.6307

Table 7: EDF goodness-of-fit measures of different distributions for dataset-1

Test ISP BD KSD LLD
KS 0.136 (0.575) 0.148(0.541) 0.146 (0.361) 0.137(0.443)
CVM 0.124(0.58) 0.150(0.325) 0.130(0.471) 0.132(0.455)
AD 0.643(0.737) 0.659 (0.466) 0.678 (0.551) 0.785 (0.638)

The parameter estimates of both the data sets taken into consideration for each model along with LL,
AIC and BIC are computed and tabulated in tables 5 and 6, respectively and the goodness of fit for each
data set is presented in table 7 and 8. From all these tables we can claim that the superiority of the proposed
model is established. Furthermore, Figure 9 and 10 shows the PP plot for both data set 1 and data set 2
respectively.
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Table 8: EDF goodness-of-fit measures of different distributions for dataset-2

Figure 10: PP Plot for Data Set 2

Test ISP BD KSD LLD
KS 0.096(0.644) 0.099(0.597) 0.103(0.497) 0.112(0.509)
CVM 0.046(0.707) 0.052(0.612) 0.059(0.685) 0.058(0.696)
AD 0.303(0.874) 0.465(0.756) 0.368(0.665) 0.394(0.705)
I5P(a, q) Beta(a.b)
E 3 ? =i
£ 3 2 34
Empical & ) h
KSia. b} LLisi, Id)
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Figure 9: PP Plot for Data Set 1
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9.

Conclusion

Here in this work, we introduced a new two parameter continuous model with bounded support (0,1).

This new model, the Inverse-Slashed Pareto distribution, has been accomplished by simply taking the inverse
of Slashed Pareto distribution. This new model being very simple and have some satisfying properties. From
application point of view, two data sets have been considered to explore its superiority over its competing
models. We are hopeful that our new distribution will be highly useful and can have significant contributions
across all the relevant fields of statistical sciences.
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