

Bounded Inverse-Slashed Pareto Model: Structural Properties and Real-Life Applications

Ishfaq Ahmad Shah^a, Mohammad Younus Bhat^b, Peer Bilal Ahmad^c, Javid Gani Dar^d, Sandra Pinelas^e

^a*Department of Mathematical Sciences, Islamic University of Science and Technology, Kashmir, India.*

^b*Department of Mathematical Sciences, Islamic University of Science and Technology, Kashmir, India.*

^c*Department of Mathematical Sciences, Islamic University of Science and Technology, Kashmir, India.*

^d*Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University) Pune, India.*

^e*Departamento De Ciencias Exatas E Engenharia, Academia Militar, Av. Conde Castro Guimaraes, 2720-113 Amadora, Portugal.*

Abstract

A novel probability model with bounded support is introduced. The formulation of this new probability model is based on inverting the Slashed Pareto distribution. This new distribution has the merit of being very simple and not involving any complex mathematical function in its construction. Some interesting properties like moments, skewness and kurtosis, unimodality, L-Moments, L-skewness and L-kurtosis would be explored in detail. Various Survival properties including survival function, hazard rate function and mean residual life(MRL) like have been given. For estimating the parameters contained in the new model, methods like Method of Moments (MOM) and Maximum Likelihood Estimation (MLE) have been used.

Keywords: Probability model Moments; Distribution Maximum Likelihood Estimation.

2010 MSC: 42B10, 42A0, 42A38, 44A20, 42C40.

1. Introduction

Although among the many alternatives and generalizations [2], It's fair to say that beta distributions represent a major family of continuous distributions with support defined on $(0, 1)$. The probability density

Email addresses: peerishfaq007@gmail.com (Ishfaq Ahmad Shah), gyounusg@gmail.com (Mohammad Younus Bhat), peerbilal@yahoo.co.in (Peer Bilal Ahmad), javid.dar@sitpune.edu.in (Javid Gani Dar), sandra.pinelas@gmail.com (Sandra Pinelas)

function (pdf) of beta distribution with parameters $m > 0$ and $n > 0$ is given by:

$$g(x) = \frac{1}{B(m, n)} x^{m-1} (1-x)^{n-1}, \quad 0 < x < 1, \quad (1)$$

with $B(\cdot, \cdot)$ is the beta function. The beta distribution is reasonably good in many ways but with shortcomings like its cumulative distribution function (CDF) is an incomplete beta function and hence as a consequence its quantile function as well. In addition to beta distribution, so many new models having bounded support on unit interval have been studied in the literature. Jones [7] Kumaraswamy distribution, the McDonalds generalized beta distribution [8], Gordy's confluent hypergeometric distribution [4], the Gauss hypergeometric distribution discussed by Armero and Bayarri [3], the transformed gamma distribution [6] and the LogLindley distribution proposed by Gómez *et al.* [5] are recent developments in this field of literature. Among all the models involve special functions in their construction except Kumaraswamy and LogLindley distribution.

Keeping the above shortcomings in mind, a new two-parameter distribution with bounded domain is being proposed here that can be considered another choice to beta, Kumaraswamy and Log-Lindley distribution. Besides involving only two parameters, it has benefit over other models as it doesn't contain any special functions. This distribution is obtained by taking the inverse of a random variable (rv) following Slashed Pareto distribution.

The rest of the paper is structured as: The Section 2 explored the derivation of proposed distribution along with unimodality and its nested models. Distributional properties like distribution function, survival function, hazard rate function etc have been presented in Section 3 followed by discussion on order statistics in Section 4. Moments and other associated properties have been discussed in Section 5. For estimation of parameters of the model, MOM and MLE have been presented in section 6. The statistical stability of the proposed model were checked by Monte Carlo simulation process in Section 7. In the penultimate section, the numerical illustration were presented. Lastly, Section 9 ends with work some remarks.

2. Inverse-Slashed Pareto Distribution

A rv Y is said to follow Inverse-Slashed Pareto distribution if its pdf is given by

$$f(y; \alpha, q) = \frac{\alpha q}{q - \alpha} (y^{\alpha-1} - y^{q-1}), \quad 0 < y < 1, \alpha > 0, q > \alpha. \quad (2)$$

Henceforth, a rv following pdf (2) will be denoted by $Y \sim \text{ISP}(\alpha, q)$. It is pertinent to note mention here that for $\alpha > q$ it has the same density function, that is called the problem of identifiability. For removing this problem we consider $q > \alpha$. The pdf (2) can be obtained by taking inverse of Slashed Pareto distribution which has been derived in Theorem 2.1.

Theorem 2.1. *If a rv $U \sim U(0, 1)$, X is another rv following Pareto distribution with the notation $X \sim \text{Par}(\alpha, 1)$ and $Z = \frac{X}{U^{\frac{1}{q}}}$ is a Slashed Pareto random variate, Then rv $Y = \frac{1}{Z}$ is an Inverse Slashed Pareto distribution whose pdf is given in (2).*

Proof. By taking into account that the cumulative distribution function (cdf) $F_X(z) = \int_{(\frac{1}{z})^q}^1 \left[1 - \left(\frac{1}{zu^{\frac{1}{q}}} \right)^\alpha \right] dx$, then using Jacobian transformation method such that $|J| = \frac{1}{y^2}$, the result follows after some computations. \square

The pdf (2) of the proposed model can be derived analytically as well.

Let $f_1(y)$ and $f_2(y)$ be two integrable functions over support $[0, 1]$ such that $f_1(y) > f_2(y) \forall y \in [0, 1]$, then $f_1(y) - f_2(y)$ is also integrable. Moreover if $\int_0^1 (f_1(y) - f_2(y)) dy = k$ then $\frac{f_1(y) - f_2(y)}{k}$ is always a density over support $[0, 1]$. Therefore, choosing $f_1(y) = y^{\alpha-1}$ and $f_2(y) = y^{q-1}$, $q > \alpha$ such that $k = \frac{q-\alpha}{\alpha q}$ and after doing

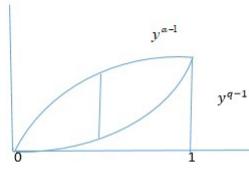


Figure 1: Analytical Genesis

some easy mathematical simplifications, Inverse-Slashed Pareto distribution (2) can be derived analytically. The first derivative of pdf (2) is:

$$\frac{d}{dy} f(y; \alpha, q) = \frac{\alpha q}{q - \alpha} [(\alpha - 1)y^{\alpha-2} - (q - 1)y^{q-2}]$$

this means that the pdf (2) is unimodal with maximum at:

- If $0 < \alpha < 1$, $0 < q < 1$ & always $q > \alpha$, then

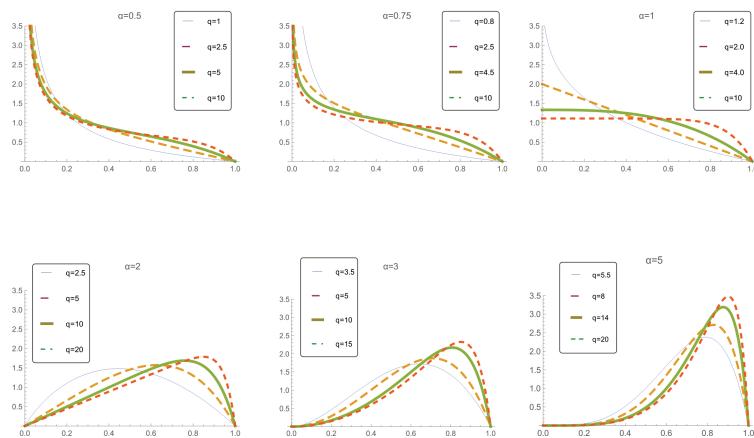
$$y_{max} = \left[\frac{\alpha - 1}{q - 1} \right]^{\frac{1}{q - \alpha}}.$$

- If $\alpha > 1$, $q > 1$ & always $q > \alpha$, then

$$y_{max} = \left[\frac{\alpha - 1}{q - 1} \right]^{\frac{1}{q - \alpha}}.$$

- If $0 < \alpha < 1$ and $q > 1$ and $q > \alpha$, then $y_{max} = 0$.

Figure 2 shows the pdf plot of proposed model for different choices parameters α and q .

Figure 2: pdf plot of $\text{IISPa}(\alpha, q)$ distribution for different values of α and q .

Theorem 2.2. If $X \sim \text{ISP}(\alpha, q)$, then $Y = X^\theta \sim \text{ISP}(\frac{\alpha}{\theta}, \frac{q}{\theta})$.

Proof. It is straightforward to prove this result. \square

In the following subsection, we will show some existing distributions appears to be particular cases of $\text{ISP}(\alpha, q)$ by choosing suitable value for parameters of the model.

2.1. Nested Models of $\text{ISP}(\alpha, q)$ Distribution

1. For $\alpha = 1$ in pdf (2), then we get a new density whose pdf is:

$$f(y; q) = \frac{q}{q-1} (1 - y^{q-1}), \quad q > 0, \quad 0 < y < 1.$$

2. For $q \rightarrow \alpha$ in pdf (2), and after doing some easy simplification then we get a new density function as:

$$f(y; \alpha) = -\alpha^2 (y^{\alpha-1}) \log(y), \quad \alpha > 0, \quad 0 < y < 1.$$

3. For $q \rightarrow \infty$ in pdf (2), the new density function is obtained with the pdf as:

$$f(y, \alpha) = \alpha y^{\alpha-1}, \quad \alpha > 0, \quad 0 < y < 1.$$

3. Distributional Properties

1. The CDF of the $\text{ISP}(\alpha, q)$ is given by

$$F_Y(y; \alpha, q) = \frac{q y^\alpha - \alpha y^q}{q - \alpha}, \quad 0 < y < 1, \quad \alpha > 0, \quad q > \alpha. \quad (3)$$

2. The Survival function of the $\text{ISP}(\alpha, q)$ is given by

$$S_Y(y; \alpha, q) = 1 - \frac{q y^\alpha - \alpha y^q}{q - \alpha}, \quad 0 < y < 1, \quad \alpha > 0, \quad q > \alpha. \quad (4)$$

3. The Hazard Function of the $\text{ISP}(\alpha, q)$ is given by

$$\begin{aligned} h(y; \alpha, q) &= \frac{f(y; \alpha, q)}{S_Y(y; \alpha, q)} \\ &= \frac{\alpha q [y^\alpha - y^q]}{y [\alpha (y^q - 1) + q (1 - y^q)]}, \quad 0 < y < 1, \quad \alpha > 0, \quad q > \alpha. \end{aligned} \quad (5)$$

The behavior of Survival function and Hazard function have been illustrated in Figure 3 and 4, respectively with different combinations of parameters.

4. For a non-negative continuous rv Y the MRL function is defined as $\mu(y) = E(Y - y|Y > y)$ and is calculated by:

$$\mu(y) = \frac{1}{S(y)} \int_y^\infty S(y) dy.$$

Considering $S(y) = S(y|\alpha, q) = 1 - \frac{q y^\alpha - \alpha y^q}{q - \alpha}$, the survival function of the $\text{ISP}(\alpha, q)$ distribution, we have

$$\mu(y|\alpha, q) = \frac{\frac{\alpha(q-\alpha)(-y^{q+1}+q(y-1)+y)}{(q+1)(\alpha+q(y^\alpha-1)-\alpha y^q)} - y}{\alpha + 1}.$$

Note that $\lim_{y \rightarrow 0} \mu(y|\alpha, q) = \frac{\alpha q}{(q+1)(\alpha+1)}$ and while as $\lim_{y \rightarrow 1} \mu(y|\alpha, q) = 0$.

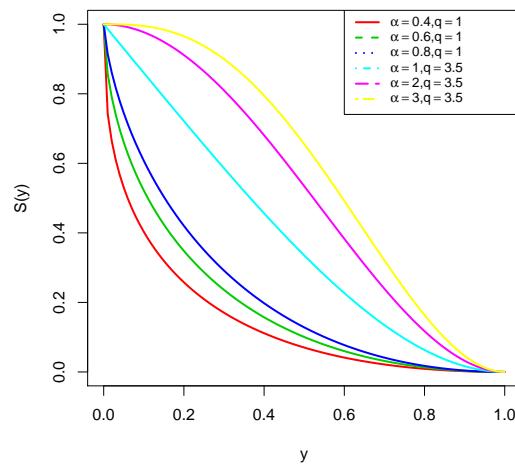


Figure 3: Plot of Survival function for different choices of parameters.

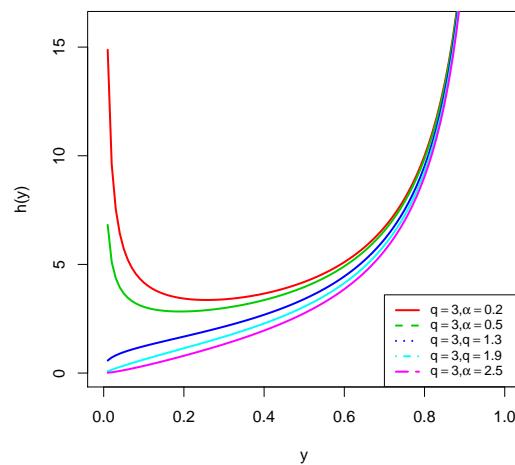


Figure 4: Plot of Hazard function for different choices of parameters.

Theorem 3.1. *The weighted version of $\text{ISP}(\alpha, q)$ distribution with weight function $\mathbb{W}(y) = Y^s$, $s > 0$ is given by*

$$f_S(y) = \frac{y^s(\alpha + s)(q + s)}{q - \alpha} (y^{\alpha-1} - y^{q-1}), \quad 0 < y < 1, -\infty < s < \infty. \quad (6)$$

Proof. Since $Y \sim \text{ISP}(\alpha, q)$, and it is given that $\mathbb{W}(y) = Y^s$. By using the definition of weighted class of distributions ([9]), the weighted pdf is

$$f_S(y) = \frac{\mathbb{W}(y)f(y)}{[E(\mathbb{W}(y))]} \cdot \quad (7)$$

Now,

$$E[\mathbb{W}(y)] = E[Y^s] = \frac{\alpha q}{(q + s)(\alpha + s)}. \quad (8)$$

The required result can be obtained easily by substituting (8) and (2) in (7). \square

4. Order Statistics

Consider a sequence Y_1, Y_2, \dots, Y_n of n independent and identically distributed rv's, each with CDF $F(y)$. The pdf of largest order statistics $Y_{(n)}$ is given by:

$$\begin{aligned} f_n(y) &= n [F(y)]^{n-1} f(y) \\ &= \frac{\alpha n q (y^\alpha - y^q) \left(\frac{q y^\alpha - \alpha y^q}{q - \alpha} \right)^{n-1}}{y(q - \alpha)}, \quad 0 < y < 1, \quad \alpha > 0, \quad q > \alpha. \end{aligned} \quad (9)$$

Also, the pdf of smallest order statistics $Y_{(1)}$ is given by:

$$\begin{aligned} f_1(y) &= n [1 - F(y)]^{n-1} f(y) \\ &= \frac{\alpha n q (y^\alpha - y^q) \left(\frac{\alpha y^q - q y^\alpha}{q - \alpha} + 1 \right)^{n-1}}{y(q - \alpha)}, \quad 0 < y < 1, \quad \alpha > 0, \quad q > \alpha. \end{aligned} \quad (10)$$

5. Moments and other Associated Properties

5.1. Raw Moments

The r^{th} moment $\text{ISP}(\alpha, q)$ about origin is:

$$E(Y^r) = \frac{\alpha q}{(q + r)(\alpha + r)}. \quad (11)$$

In particular, the first four raw moments of $\text{ISP}(\alpha, q)$ can be obtained easily by putting $r = 1, 2, 3, 4$ in (11) and are as follows:

$$\begin{aligned} \mu'_1 &= \frac{\alpha q}{(q + 1)(\alpha + 1)}, \\ \mu'_2 &= \frac{\alpha q}{(q + 2)(\alpha + 2)}, \\ \mu'_3 &= \frac{\alpha q}{(q + 3)(\alpha + 3)}, \\ \mu'_4 &= \frac{\alpha q}{(q + 4)(\alpha + 4)}, \end{aligned}$$

The variance (μ_2) is obtained as:

$$\begin{aligned} \mu_2 &= \mu'_2 - (\mu'_1)^2 \\ &= \alpha q \left[\frac{1}{(\alpha + 2)(q + 2)} - \frac{\alpha q}{(\alpha + \alpha q + q + 1)^2} \right]. \end{aligned} \quad (12)$$

5.2. Coefficient of Variation

Coefficient of Variation (C.V.) ($\frac{\sigma}{\bar{x}}$) is:

$$C.V. = \frac{(\alpha + 1)(q + 1) \sqrt{\alpha q \left(\frac{1}{(\alpha+2)(q+2)} - \frac{\alpha q}{(\alpha + \alpha q + q + 1)^2} \right)}}{\alpha q}.$$

The table (1) contains the information about C.V. for different combinations of parameters.

Table 1: Numerical values of C.V. for different choices of parameters α and q

$q \downarrow$	$\alpha = 1$	$\alpha = 2.5$	$\alpha = 4$	$\alpha = 6$	$\alpha = 8$	$\alpha = 10$	$\alpha = 12$	$\alpha = 14$	$\alpha = 16$
1	0.881917	0.672199	0.6236	0.60092	0.5916	0.1856	0.1543	0.1432	0.12671
2.5	0.672199	0.430905	0.366414	0.334027	0.3302	0.31299	0.3089	0.2967	0.27539
4	0.62361	0.366414	0.29167	0.25173	0.1654	0.2244	0.0827	0.07765	0.0057
6	0.600925	0.334027	0.2517	0.20518	0.0811	0.1712	0.1160	0.1023	0.1006
8	0.591608	0.320156	0.16535	0.183285	0.1586	0.1023	0.0163	0.0104	0.0102
10	0.586894	0.31299	0.22438	0.17129	0.1023	0.0132	0.1206	0.0142	0.0134
12	0.56540	0.3028	0.15675	0.16231	0.0163	0.1205	0.1093	0.0875	0.0056
14	0.54680	0.291299	0.14321	0.132456	0.0348	0.0419	0.1021	0.0342	0.00312
17	0.53020	0.27299	0.13222	0.11678	0.1251	0.0018	0.0952	0.0654	0.0351
19	0.53020	0.24098	0.11675	0.104596	0.011789	0.0011	0.07546	0.00239	0.0076

The C.V. Plot has been displayed in figure (5) as function of q by fixing α which verifies that it is decreasing function of q , i.e as q increases, C.V. decreases. In addition to C.V., we can also find Index of Dispersion(IOD)

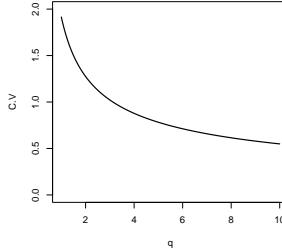


Figure 5: C.V. Plot

which is mathematically given by

$$IOD = \frac{Var(X)}{E(X)} = (\alpha + 1)(q + 1) \left(\frac{1}{(\alpha + 2)(q + 2)} - \frac{\alpha q}{(\alpha + \alpha q + q + 1)^2} \right).$$

The numerical values of IOD for taking different values of α and q are displayed in table (2).

Furthermore, The IOD plot has been exhibited in figure (6) with respect to q which shows that IOD is an increasing function of q .

We can also find Coefficient of Skewness (γ_1) and Measure of Kurtosis (γ_2) of the $\text{ISP}(\alpha, q)$ distribution, respectively as:

$$\gamma_1 = \frac{\mu_3}{\mu_2^{\frac{3}{2}}}, \quad \gamma_2 = \frac{\mu_4}{\mu_2^2}$$

The contour plot of both the Skewness and Kurtosis for parameters α and q are shown in Figure 7.

Table 2: IOD values for various choices of parameters α and q

$q \downarrow$	$\alpha = 1$	$\alpha = 2.5$	$\alpha = 4$	$\alpha = 6$	$\alpha = 8$	$\alpha = 10$	$\alpha = 12$	$\alpha = 14$	$\alpha = 16$
1	0.1944	0.1614	0.1556	0.1547	0.1435	0.1235	0.1087	0.09085	0.0768
2.5	0.161376	0.0947	0.0767	0.0683	0.0571	0.0431	0.0394	0.0231	0.0134
4	0.1556	0.0767	0.0544	0.0435	0.0342	0.0215	0.0162	0.0098	0.0056
6	0.1547	0.0683	0.0435	0.0309	0.0234	0.0178	0.0078	0.0543	0.0451
8	0.1556	0.0651	0.0389	0.0256	0.0134	0.0100	0.0098	0.0065	0.0035
10	0.1435	0.0636	0.0367	0.0228	0.01133	0.00986	0.8764	0.0061	0.0051
12	0.1345	0.0624	0.03567	0.0221	0.0127	0.0078	0.0123	0.00876	0.0067
14	0.1267	0.0611	0.03178	0.0211	0.0045	0.0023	0.2200	0.021235	0.01156
17	0.1134	0.0546	0.0298	0.0145	0.0134	0.01156	0.0234	0.00034	0.00027
19	0.1056	0.0467	0.0279	0.00934	0.0987	0.01234	0.01139	0.00012	0.00098

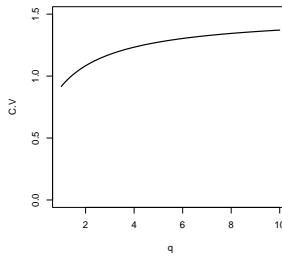


Figure 6: IOD Plot

5.3. Geometric Mean

The geometric mean (G_Y) of a rv $Y \sim \text{ISP}(\alpha, q)$ is:

$$G_Y = E[\ln(Y)] = \int_0^1 \ln(y) f(y; \alpha, q) dy \\ = e^{-\frac{(\alpha+q)}{\alpha q}}.$$

5.4. Harmonic Mean:

The harmonic mean (H_Y) of a $\text{ISP}(\alpha, q)$ distribution is:

$$H_Y = \frac{1}{E[\frac{1}{Y}]} \\ = \frac{(\alpha-1)(q-1)}{\alpha q}.$$

5.5. L-Moments

To explore the shape of a probability function, L-moments are used. The first L-moment is the mean of the density function. Explicit higher L-moment formula available. Nevertheless, the general formula for the r^{th} L-moment ($r \geq 2$) is given by:

$$\lambda_k = \frac{1}{k} \sum_{i=0}^{k-2} (-1)^i \binom{k-2}{i} \binom{k}{i+1} i(-i+k-1, i+1), \quad (13)$$

where $J(i_1, i_2) = \int_0^1 F^{i_1}(y)(1-F(y))^{i_2} dy$. In case of the $\text{ISP}(\alpha, q)$ distribution

$$J(i_1, i_2) = \int_0^1 \left(\frac{qy^\alpha - \alpha y^q}{q - \alpha} \right)^{i_1} \left(1 - \frac{qy^\alpha - \alpha y^q}{q - \alpha} \right)^{i_2} dy.$$

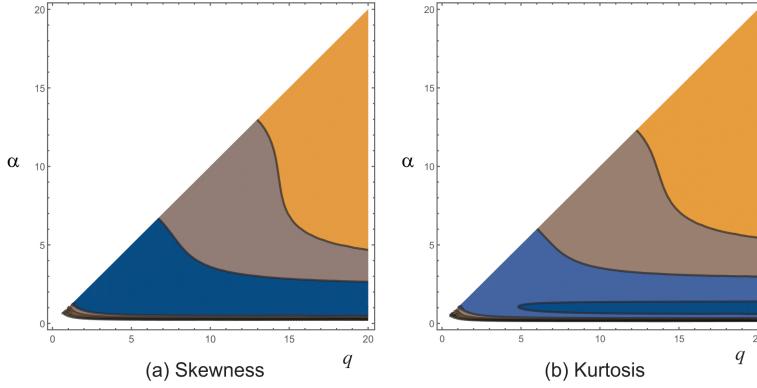


Figure 7: Plot of Skewness and Kurtosis

Here just the scale measure which is the second L-moment is given by:

$$\lambda_2 = \frac{\alpha q (2\alpha^2 + 3\alpha + 2\alpha q + q(2q + 3) + 1)}{(\alpha + 1)(2\alpha + 1)(q + 1)(2q + 1)(\alpha + q + 1)}, \quad \alpha > 0, q > 0. \quad (14)$$

5.6. L-Skewness:

The L-Skewness denoted by τ_3 can be obtained as:

$$\tau_3 = \frac{\lambda_3}{\lambda_2}.$$

5.7. L-Kurtosis:

The L-Kurtosis (τ_4) is defined as:

$$\tau_4 = \frac{\lambda_4}{\lambda_2}.$$

Contour plot of both L-skewness and L-kurtosis are shown in Figure 8.

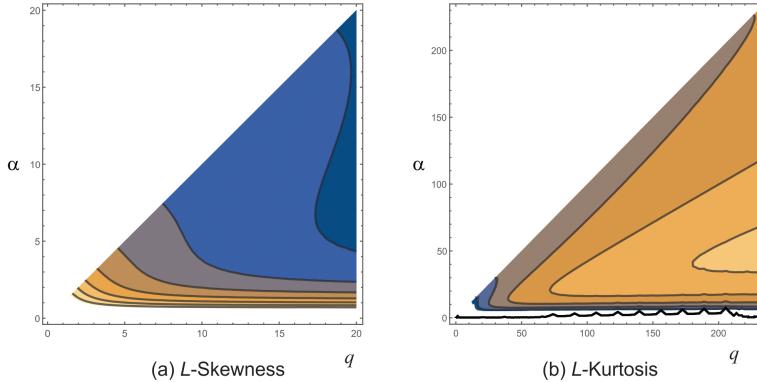


Figure 8: Plot of L-skewness and L-kurtosis

6. Methods of Estimation

6.1. Method of Moments

Moments estimator of parameter α and q of $\text{ISP}(\alpha, q)$ can be find out easily by solving

$$m_1 = \mu'_1 = \frac{\alpha q}{(\alpha + 1)(q + 1)}, \quad \text{and} \quad m_2 = \mu'_2 = \frac{\alpha q}{(\alpha + 2)(q + 2)},$$

where m_1 and m_2 are first and second sample moments. Solving above system of equations in terms of α and q , the moment estimators obtained are

$$\hat{\alpha} = \frac{-3m_1m_2 - \sqrt{(3m_1m_2 + m_1 - 4m_2)^2 - 8m_1m_2(m_1m_2 + m_1 - 2m_2)} - m_1 + 4m_2}{2(m_1m_2 + m_1 - 2m_2)}, \quad (15)$$

$$\hat{q} = \frac{\sqrt{m_1^2(m_2 - 1)^2 - 8m_1m_2(m_2 + 1) + 16m_2^2} - m_1(3m_2 + 1) + 4m_2}{2(m_1m_2 + m_1 - 2m_2)}. \quad (16)$$

6.2. Maximum Likelihood Estimation

The popular method of obtaining estimates is MLE. Consider a random sample of size n from the $\text{ISP}(\alpha, q)$ distribution with pdf (2). The corresponding likelihood function is

$$L(\alpha, q|\underline{y}) = \left(\frac{\alpha q}{q - \alpha} \right)^n \sum_{i=0}^n (y_i^{\alpha-1} - y_i^{q-1}). \quad (17)$$

Taking log of (17), we get:

$$\log(L(\alpha, q|\underline{y})) = n \log(\alpha) + n \log q - n \log(q - \alpha) + \sum_{i=0}^n \log(y_i^{\alpha-1} - y_i^{q-1}). \quad (18)$$

The ML Estimates $\hat{\alpha}$ of α and \hat{q} of q , respectively, can be obtained by solving equations

$$\frac{\partial \log L}{\partial \alpha} = 0, \quad \text{and} \quad \frac{\partial \log L}{\partial q} = 0.$$

where

$$\frac{\partial \log L}{\partial \alpha} = \frac{n}{\alpha} + \frac{n}{q - \alpha} + \sum_{i=0}^n \frac{y_i^{\alpha-1} \log(y_i)}{y_i^{\alpha-1} - y_i^{q-1}},$$

and

$$\frac{\partial \log L}{\partial q} = \frac{n}{q} - \frac{n}{q - \alpha} - \sum_{i=0}^n \frac{y_i^{q-1} \log(y_i)}{y_i^{\alpha-1} - y_i^{q-1}}.$$

Unfortunately, above equations are not in explicit forms and therefore a suitable iterative procedure is needed to get the required estimates numerically.

The second order partial derivatives of (18) are as follows:

$$\begin{aligned} \frac{\partial^2 \log L}{\partial \alpha^2} &= -\frac{n}{\alpha^2} + \frac{n}{(q - \alpha)^2} + \sum_{i=0}^n \left(\frac{y_i^{\alpha-1} \log^2(y_i)}{y_i^{\alpha-1} - y_i^{q-1}} - \frac{y_i^{2\alpha-2} \log^2(y_i)}{(y_i^{\alpha-1} - y_i^{q-1})^2} \right), \\ \frac{\partial^2 \log L}{\partial \alpha \partial q} &= \sum_{i=0}^n \frac{\log^2(y_i) y_i^{\alpha+q}}{(y_i^q - y_i^\alpha)^2} - \frac{n}{(q - \alpha)^2}, \\ \frac{\partial^2 \log L}{\partial q^2} &= -\frac{n}{q^2} + \frac{n}{(q - \alpha)^2} - \sum_{i=0}^n \left(\frac{y_i^{q-1} \log^2(y_i)}{y_i^{\alpha-1} - y_i^{q-1}} + \frac{y_i^{2q-2} \log^2(y_i)}{(y_i^{\alpha-1} - y_i^{q-1})^2} \right). \end{aligned}$$

Obtaining the expected Fisher information matrix as

$$\mathbf{J}_x = \begin{bmatrix} -\mathbb{E} \left(\frac{\partial^2 \log L}{\partial \alpha^2} \right) & -\mathbb{E} \left(\frac{\partial^2 \log L}{\partial \alpha \partial q} \right) \\ -\mathbb{E} \left(\frac{\partial^2 \log L}{\partial q \partial \alpha} \right) & -\mathbb{E} \left(\frac{\partial^2 \log L}{\partial q^2} \right) \end{bmatrix}$$

which in approximation can be written as

$$\mathbf{J}_x \approx \begin{bmatrix} J_{\alpha\alpha} & J_{\alpha q} \\ J_{q\alpha} & J_{qq} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 \log L}{\partial \alpha^2} \Big|_{\hat{\alpha}, \hat{q}} & \frac{\partial^2 \log L}{\partial \alpha \partial q} \Big|_{\hat{\alpha}, \hat{q}} \\ \frac{\partial^2 \log L}{\partial q \partial \alpha} \Big|_{\hat{\alpha}, \hat{q}} & \frac{\partial^2 \log L}{\partial q^2} \Big|_{\hat{\alpha}, \hat{q}} \end{bmatrix}$$

where $\hat{\alpha}$ and \hat{q} are MLE of α and q respectively. Hence, when n is large and under some mild regularity conditions,

$$\sqrt{n} \begin{pmatrix} \alpha - \hat{\alpha} \\ q - \hat{q} \end{pmatrix} \xrightarrow{a} N_2 \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{J}_x^{-1} \right),$$

where " \xrightarrow{a} " means approximately distributed, and \mathbf{J}_x^{-1} is the inverse of \mathbf{J}_x . The above asymptotic normal distribution is useful for the construction of approximate confidence intervals for the parameters.

Generation of Random Numbers

Usually for generating random numbers of any arbitrary distribution, the Inverse CDF technique is used. However, sometimes due to the implicit form of distribution function of the proposed model, it becomes cumbersome to generate random numbers by using this technique. In our proposed model we discuss an alternative way to generate the random variables for $\text{ISP}(\alpha, q)$. As the proposed model is derived by taking the inverse of Slashed Pareto distribution, following algorithm can be used to get random numbers of $\text{ISP}(\alpha, q)$:

Step 1: Generate U_i and V_i ($i = 1, 2, \dots, n$) from $U(0, 1)$ independently.

Step 2: Corresponding to each V_i , determine $X_i = (1 - V_i)^{\frac{-1}{\alpha}}$.

Step 3: Finally generate Y_i from $\frac{U_i^{\frac{1}{q}}}{x_i}$.

7. Simulation Study

In this section, we perform simulation of the proposed model to evaluate the performance of ML estimators $\hat{\alpha}$ and \hat{q} in estimating α and q , respectively. Simulation was accomplished with the help of R computational software (R code of simulation study can be available on request for the reader), and the number of replications was 10000. The assessment of each point estimate was carried out on the basis of the average bias and the mean squared error (MSE) for each sample size, whose respective formulas are given as under:

$$\frac{1}{m} \sum_{i=1}^m (\hat{\Lambda}_i - \Lambda_0),$$

The average MSE

$$\frac{1}{m} \sum_{i=1}^m (\hat{\Lambda}_i - \Lambda_0)^2.$$

We took the sample size of $n = 100, 200, 300, 400$ and consider $\alpha = 0.5, 1.5, 2.5$ and 3.5 and $q = 4, 6$. The simulation results for each parameter α and q are displayed in Tables 3 and 4, respectively.

Table 3: Simulation study for α estimates based on MLE

Table 3: Simulation study for α estimates based on MLE									
q=4					q=6				
$\alpha=0.5$	n	α			α	n	α		
		Mean	Bias	MSE			Mean	Bias	MSE
100	0.52012	0.02012	6.00E-05	0.00606	100	0.51495	0.01495	5.00E-05	0.0044
200	0.50825	0.00825	1.00E-05	0.00212	200	0.50684	0.00684	1.00E-05	0.00174
300	0.50527	0.00527	0	0.00131	300	0.50513	0.00513	0	0.00109
400	0.5039	0.0039	0	0.00095	400	0.50354	0.00354	0	8.00E-04
<hr/>									
$\alpha=1.5$	n	α			α	n	α		
		Mean	Bias	MSE			Mean	Bias	MSE
100	1.65197	0.15197	0.00151	0.12841	100	1.60789	0.10789	0.00115	0.10384
200	1.59187	0.09187	4.00E-04	0.07235	200	1.54689	0.04689	0.00021	0.04043
300	1.56178	0.06178	0.00017	0.0477	300	1.52799	0.02799	8.00E-05	0.02179
400	1.54817	0.04817	9.00E-05	0.03447	400	1.52102	0.02102	4.00E-05	0.01446
<hr/>									
$\alpha=2.5$	n	α			α	n	α		
		Mean	Bias	MSE			Mean	Bias	MSE
100	2.6363	0.1363	0.0027	0.25129	100	2.7518	0.2518	0.00418	0.35425
200	2.63502	0.13502	0.00105	0.19236	200	2.66595	0.16595	0.00123	0.21924
300	2.62413	0.12413	0.00059	0.16105	300	2.62597	0.12597	0.00058	0.15798
400	2.62066	0.12066	0.00038	0.13906	400	2.59389	0.09389	0.00031	0.11604
<hr/>									
$\alpha=3.5$	n	α			α	n	α		
		Mean	Bias	MSE			Mean	Bias	MSE
100	3.33589	0.16411	0.00362	0.33503	100	3.74219	0.24219	0.00614	0.55502
200	3.35552	0.14448	0.00132	0.24261	200	3.72964	0.22964	0.00224	0.39526
300	3.37479	0.12521	0.00072	0.19942	300	3.70621	0.20621	0.00124	0.32873
400	3.38556	0.11444	0.00048	0.17825	400	3.68676	0.18676	0.00082	0.29159

Based on the results from Simulation study, we can claim that:

- As expected, MSE and Bias for all estimators decreases as sample size increases which confirms the attainment of stability of estimators.

8. Numerical Illustration

In this section, the applicability of $\text{ISP}(\alpha, q)$ has been shown by considering two data sets corresponding to the Households with Access to Safe Drinking Water of the 35 states in 2011 in India. They were extracted from the Households with Access to safe Drinking Water. The proposed distribution has been compared with following distributions namely:

(i). Beta Distribution (BD):

$$f_1(y) = \frac{1}{B(\alpha, \beta)} y^{\alpha-1} (1-y)^{\beta-1}, \quad \alpha, \beta > 0.$$

(ii). Kumarswamy's Distribution (KSD):

$$f_2(y) = \alpha \beta y^{\alpha-1} (1-y^{\alpha})^{\beta-1}, \quad \alpha, \beta > 0.$$

Table 4: Simulation study for q estimates based on MLE

q=4					q=6				
q					q				
n	mean	Bias	MSE	Var	n	mean	Bias	MSE	Var
100	5.573071	1.573071	1.417144	139.2537	100	9.60985	3.60985	4.360972	423.1085
200	4.408995	0.408995	0.062122	12.25835	200	7.186886	1.186886	0.467649	92.13032
300	4.216082	0.216082	0.008543	2.516459	300	6.502878	0.502878	0.031402	9.168647
400	4.1522	0.1522	0.003519	1.38453	400	6.393742	0.393742	0.016025	6.255635
<hr/>									
n	mean	Bias	MSE	Var	n	mean	Bias	MSE	Var
100	4.289087	0.289087	0.170197	16.93786	100	6.979715	0.979715	1.589365	157.9924
200	4.051729	0.051729	0.008702	1.737991	200	6.260078	0.260078	0.023757	4.684144
300	4.050005	0.050005	0.003806	1.139303	300	6.146147	0.146147	0.008682	2.583469
400	4.014399	0.014399	0.002019	0.807526	400	6.105994	0.105994	0.004652	1.849853
<hr/>									
n	mean	Bias	MSE	Var	n	mean	Bias	MSE	Var
100	4.464601	0.464601	0.126949	12.48026	100	6.469776	0.469776	0.250139	24.79569
200	4.148039	0.148039	0.007721	1.522517	200	6.088095	0.088095	0.019621	3.916824
300	4.085444	0.085444	0.003709	1.105363	300	6.020559	0.020559	0.008439	2.531534
400	4.020378	0.020378	0.002063	0.824854	400	6.014956	0.014956	0.004625	1.84985
<hr/>									
n	mean	Bias	MSE	Var	n	mean	Bias	MSE	Var
100	4.923461	0.923461	0.095216	8.669718	100	6.59762	0.59762	0.143692	14.01349
200	4.586259	0.586259	0.009753	1.607132	200	6.122012	0.122012	0.017142	3.413757
300	4.450452	0.450452	0.004033	1.007121	300	6.022998	0.022998	0.007958	2.387207
400	4.398152	0.398152	0.002419	0.809229	400	5.989169	0.010831	0.004818	1.927462

(iii). Log-Lindley Distribution (LLD):

$$f_3(y) = \sigma(\lambda + \sigma(\lambda - 1) \log(y))y^{\sigma-1}, \quad \sigma > 0, 0 \leq \lambda \leq 1.$$

Proposed model including the competing ones have been compared by using log-likelihood (LL), Akaike's Information Criterion (AIC)[1] and Bayesian information criterion (BIC) [10]. To check the goodness of fit, empirical distribution function (EDF) goodness-of-fit measures like KolmogorovSmirnov (KS) test statistics, the Cramervon Mises (CVM) test statistics, and the AndersonDarling (AD) test statistics have been used and whose definition and formulas are given as under:

Denote the cdf of the fitted model by \hat{F} , the original data by y_1, \dots, y_M , and the ordered data in increasing magnitude by $y_{(1)}, \dots, y_{(M)}$, then we have

1. KS test statistics: $D = \max(D^+, D^-)$, where

$$D^+ = \max_{1 \leq k \leq M} \left| \frac{k}{M} - \hat{F}(y_{(k)}) \right|,$$

$$D^- = \max_{1 \leq k \leq M} \left| \hat{F}(y_{(k)}) - \frac{k-1}{M} \right|.$$

2. CVM test statistics:

$$W^2 = \sum_{k=1}^M \left[\hat{F}(y_{(k)}) - \frac{2k-1}{2M} \right]^2 + \frac{1}{12M}.$$

3. AD test statistics:

$$A^2 = -M - \frac{1}{M} \sum_{k=1}^M \left[(2k-1) \log(\hat{F}(y_{(k)})) + (2m+1-2k) \log(1 - \hat{F}(y_{(k)})) \right].$$

Table 5: Model validation criterion of different probabilistic models for dataset-1

Models	Estimated Parameters	LL	AIC	BIC
ISP	$\alpha=3.67362, q = 270.367$	19.9994	39.9988	36.8881
BD	$\alpha=3.35461, \beta=0.914946$	19.8176	39.6352	36.5245
KSD	$\alpha= 3.43322, \beta= 0.922136$	19.7934	39.5868	36.4761
LLD	$\lambda= 27308.5, \sigma = 3.62441$	19.7257	39.4514	36.3407

Table 6: Model validation criterion of different probabilistic models for dataset-2

Models	Estimated Parameters	LL	AIC	BIC
ISP	$\alpha= 3.04388, q = 815.987$	15.462	30.924	27.8133
BD	$\alpha= 2.93138, \beta = 0.960894$	15.3887	30.7774	27.6667
KSD	$\alpha= 2.95573, \beta= 0.96144$	15.3867	30.7734	27.6627
LLD	$\lambda=35280.6, \sigma = 3.03259$	15.3707	30.7414	27.6307

Table 7: EDF goodness-of-fit measures of different distributions for dataset-1

Test	ISP	BD	KSD	LLD
KS	0.136 (0.575)	0.148(0.541)	0.146 (0.361)	0.137(0.443)
CVM	0.124(0.58)	0.150(0.325)	0.130(0.471)	0.132(0.455)
AD	0.643(0.737)	0.659 (0.466)	0.678 (0.551)	0.785 (0.638)

The parameter estimates of both the data sets taken into consideration for each model along with LL, AIC and BIC are computed and tabulated in tables 5 and 6, respectively and the goodness of fit for each data set is presented in table 7 and 8. From all these tables we can claim that the superiority of the proposed model is established. Furthermore, Figure 9 and 10 shows the PP plot for both data set 1 and data set 2 respectively.

Table 8: EDF goodness-of-fit measures of different distributions for dataset-2

Test	ISP	BD	KSD	LLD
KS	0.096(0.644)	0.099(0.597)	0.103(0.497)	0.112(0.509)
CVM	0.046(0.707)	0.052(0.612)	0.059(0.685)	0.058(0.696)
AD	0.303(0.874)	0.465(0.756)	0.368(0.665)	0.394(0.705)

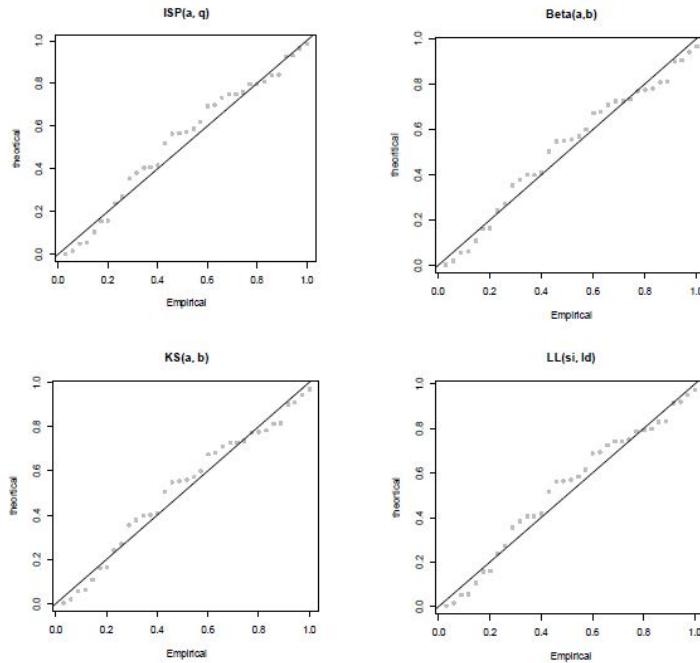


Figure 9: PP Plot for Data Set 1

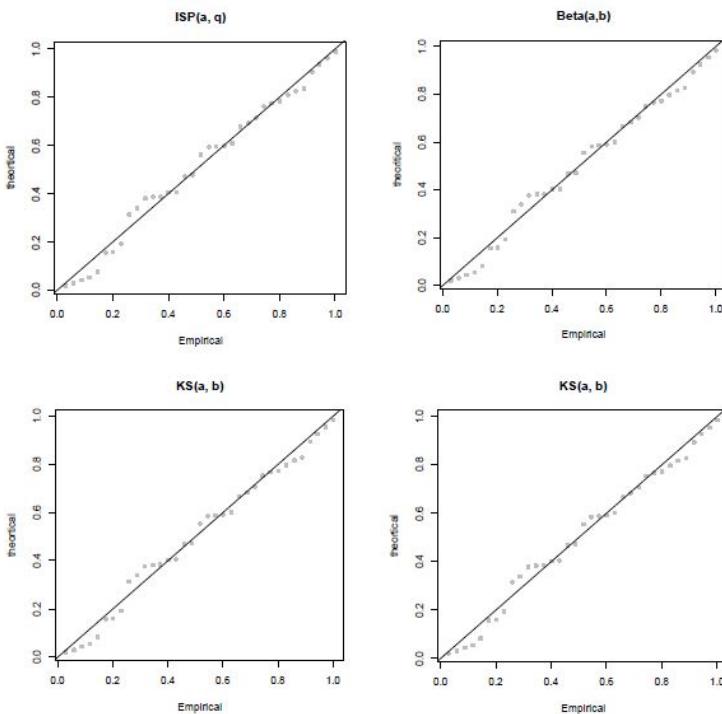


Figure 10: PP Plot for Data Set 2

9. Conclusion

Here in this work, we introduced a new two parameter continuous model with bounded support (0,1). This new model, the Inverse-Slashed Pareto distribution, has been accomplished by simply taking the inverse of Slashed Pareto distribution. This new model being very simple and have some satisfying properties. From application point of view, two data sets have been considered to explore its superiority over its competing models. We are hopeful that our new distribution will be highly useful and can have significant contributions across all the relevant fields of statistical sciences.

Declarations

- Ethical Approval: Not applicable.
- Availability of data and materials: The data is provided on the request to the authors.
- Competing interests: The authors have no competing interests.
- Funding: No funding was received for this work
- Author's contribution: All the authors equally contributed towards this work.

References

- [1] H. Akaike, A new look at the statistical model identification. *IEEE Transactions on Automatic Control*, 1974;19(6): 716–723.
- [2] S. Kotz, J.R. van Dorp, *Beyond Beta; Other Continuous Families of Distributions With Bounded Support and Applications*, 2004, World Scientific, New Jersey.
- [3] C. Armero, M.J. Bayarri, Prior assessments for prediction in queues. *The Statistician*, 1994;43: 139–153.
- [4] M.B. Gordy, Computationally convenient distributional assumptions for common-value auctions. *Computational Economics*, 1998;12:61–78.
- [5] E. Gómez-Déniz, M. A. Sordo, E. Calderí-Ojeda, The LogLindley distribution as an alternative to the beta regression model with applications in insurance. *Insurance: Mathematics and Economics*, 2014; 54:49–57.
- [6] A. Grassia, On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions. *The Australian Journal of Statistics*, 1997;19 (2):108–114.
- [7] M.C. Jones, Kumaraswamys distribution: a beta-type distribution with some tractability advantages. *Statistical Methodology* 2009: 70–81.
- [8] J.B. McDonald, Some generalized functions for the size distribution of income. *Econometrica*, 1984;52:647–664.
- [9] G. P. Patil, M. V. Ratnaparkhi, Weighted Distributions and Size-Biased Sampling with Applications to Wildlife Populations and Human Families. *Biometrics*, 1978;34:179–189.
- [10] G. Schwarz, Estimating the dimension of a model. *Annals of Statistics*, 1978;6(2):461–464.