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Abstract

In this work, we develop a systematic procedure to obtain the general solutions of a class of nonlinear or-
dinary differential equations (ODEs) directly through the special functions or other known functions. By
introducing a suitable transformation in the state variable/dependent variable of the given nonlinear ODE,
we can relate it to one of the the special function equations, including Hermite’s equation, Legendre’s equa-
tion, and Laguerre’s equation or other equations solvable through known functions, including isochronous
and limit cycle solutions. This procedure can be further generalized to higher order nonlinear ODEs. Ob-
taining the general solutions of the nonlinear ODEs with the help of special functions is new to the literature
to our knowledge.
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1. Introduction

Finding the general solution of a given nonlinear ordinary differential equation (ODE) is still a difficult
task. To derive the solutions of a given ODE, the Norwegian mathematician Sophus Lie introduced a powerful
method now known as the Lie group method [1, 2, 3]. This method provides infinitesimal symmetries
associated with the given ODE and, in general, these infinitesimal symmetries depend only on the dependent
and independent variables of the given differential equation. From the underlying Lie point transformation,
one may find the solution through order reduction procedure or construct the associated integrals of motion.
However, not all nonlinear ODEs, in general, admit Lie point symmetries. Hence to prove the integrability
of the given dynamical system few other methods have also been developed in the literature. Some of the
familiar methods are Prelle-Singer procedure, the method of Darboux polynomials, Jacobi last multiplier
procedure, A-symmetries method and so on [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Each method/procedure
has its own merits and demerits. In the literature the aforementioned methods have been applied to a wide
range of problems.

Apart from the above, one may also solve the given nonlinear ODE by transforming it into a linear ODE
or even to a known integrable/solvable nonlinear ODE. The transformation may be either local or nonlocal.
Identifying a suitable transformation for the given equation is not a trivial task [15, 16, 17, 18, 19, 20]. In
this work, we present a hybrid method to integrate nonlinear ODEs. In this integration technique, we bring
together the method of linearization and direct integration. We assume the solution of the nonlinear ODE
to exist in a rational form, that is, the ratio of two different functions in which the numerator is the one of
special functions, for example the Hermite, Legendre and Laguerre function, or any other known functions
and the denominator is the solution of a first-order ODE. Imposing the compatibility between this solution
and the given equation, we fix the form of the nonlinear ODE. To derive the solution of the nonlinear
ODE, we again consider the solution of the linear or solvable nonlinear ODEs, namely an arbitrarily chosen
function which we introduce in the process. In our work, as examples, we consider the form of the linear
ODE:s as linear harmonic oscillator, damped harmonic oscillator, Hermite, Legendre and Laguerre equations.
However, one may consider any other linear function also. As far as our knowledge goes, this is the first
time in the literature, the solution of the nonlinear ODEs are obtained through such special functions.

The structure of the paper is as follows: In Sec 2, we present the procedure and in Sec 3, we consider
four examples corresponding to second order ODEs and illustrate the method of deriving the solutions of
nonlinear ODEs through known functions, including the special functions. Next, in Sec. 4, we indicate the
extension of the method to third order ODEs. Finally, we present our conclusion in Sec.5.

2. Method: Second order nonlinear ODEs

Let us consider a second order nonlinear ODE in the form
&= P(t,x, &), (1)

where dot denotes differentiation with respect to time and P is an analytic function in ¢, z and &. Let us
assume that the ODE (1) admits a solution which is a ratio of two functions, that is

z(t) = w(t)/s(t), (2)

where w is the solution of the differential equation

W= Q(t,w,w), (3)
and the function s(t) satisfies the first order differential equation

$ = h(x,t)s. (4)
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One can note that most of the integrable nonlinear equations admit solutions of the form (2). In Eq. (4),
h(z,t) is a function which has to be chosen appropriately. The ODE (3) may be of any form but satisfies
a homogeneous relation as specified below. However, to demonstrate our ideas, in this work, we consider
Eq. (3) to be one of the equations in the family of special function equations, namely Hermite’s equation,
Legendre’s equation and Laguerre’s equation, besides the basic simple harmonic oscillator equation form.
We will also consider an example where transformation to a nonlinear integrable equation is also made.

To find the explicit form of P(t,z, &) that is consistent with Egs. (3) and (4), we proceed in the following
way. Differentiating Eq. (2) with respect to ¢ and using the Eqs. (3) and (4) therein, we obtain the following
first-order ODE equation, that is

T+ h(z,t)r =w/s. (5)

Differentiating the above equation (5) one more time with respect to ¢ and substituting & = P(¢,z, %) in it
one obtains the following equation,

P(t,z,3) + (2h + zhy)® + (he + h?)z = Q(t, w, ) /5. (6)
Now we demand that () satisfies the homogenous relation, that is
Q(t,rz,rt) =rQ(t,x, ). (7)
Then Eq. (6) can be written in the following form with the help of Egs. (2) and (5),
P(t,x, &) + (2h + xhy )i + (hy + h*)z = Q(t, x, & + hx), (8)
or
i =Qt,z, &+ ha) — (2h + zhy)E + (he + h?)a. (9)

One may observe that in the above procedure we have kept the function h(z,t) as arbitrary. Then, for

different choices of () and h, one can get different nonlinear ODEs. By utilizing the known expressions, w

and h, we can derive the solution for the nonlinear ODE (9). To see this clearly, we proceed as follows.
From Egs. (2) and (5) we obtain

L+ h(x,t
8—1::”(3:’)‘%:5]. (10)

w
Rewriting Eq. (10) we find
d, =z
—(In — =0. 11
L %)+ hte1) = 0 (1)

The above equation can be integrated explicitly only for specific choice of h(z,t). Integrating Eq. (11) with
specific form of h(x,t) we can obtain the solution z(t) for the nonlinear equation (9). To be specific, we
make a choice

h(z,t) = a(t)z™ + b(t) (12)

where n is a constant and a(t) and b(t) are arbitrary functions of ¢. Then we obtain the solution of the
equation (11) as

fft' b(t')dt!
(1) = w(t)e™ o . (13)

<I +n fgl(a(t/)w(t/)ne*" f(f// b(t”)dt//)dt/> !

=
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The corresponding nonlinear ODE is

E 4 Q(t,x, & + a(t)™ ! +b(t)x) + (2 + n)a(t)z" + 2b(t))i
+ [a(t)@™ + b(t); + a(t)*2®" + b(t)* + 2a(t)b(t)z"]z = 0. (14)
Through the above discussed procedure, we can find the solution of the nonlinear equation (1) directly
without solving it. In the following, we consider the form of @) as
u']2
Qlt,w,10) = p(t) + a(t)i + r(t)w, (15)

so that the homogeneity relation (7) is satisfied and then discuss their nonlinear counterparts in the variable
x(t) and investigate their significance.

3. Applications of the method

3.1. Isochronous solution of nonlinear ODEs

To start with we will consider a simple model, where the equation corresponding to (3) is the linear
harmonic oscillator equation. Correspondingly, we make the choice p(t) = ¢(t) = 0 and r(t) = —w?, so that
Eq. (15) is of the linear harmonic oscillator (SHO) form and the corresponding nonlinear equation (14)
becomes

= —(2h(x,t) + zh(z,t).)E + (h(z,t); + h(z, 1))z — Wz, (16)

where h(x,t) is an arbitrary function of z and ¢ to be chosen appropriately. The solution of the nonlinear
equation can be obtained from the equation

w — E = cot, (Wt"‘ 6)a (17)
x w

where w = Asin (wt + J) is the general solution of the SHO equation and A and § are arbitrary constants.
For the choice h(z,t) = a(t)z™ 4 b(t), Eq. (17) becomes the well-known Bernoulli equation of the form

&= —a(t)z" T — (b(t) — cot (wt + )z, (18)
and the solution of the equation is given by

: ff’// b(t')dt
2(t) = sin (wt + 0)e™ Jo , (19)

(I + nfg/(a(t') sin™ (U.)t/ + 5)€7n Ow b(t//)dt//)dt/)

S|=

where I is an integration constant. Equation (19) is the general solution for the equation (16) with h(x,t) =
a(t)x™ + b(t), so that it takes the form

= —[(2+n)a(t)z" + 2b(t)|E — [a(t)sz™ + b(t) + a(t)?z>"
+ b(t)? + 2a(t)b(t)z"]x — wia. (20)

™

When n = 2m + 1, b(t) = 0 and a(t) = ay, the solution becomes periodic with period T = 2%
the same as that of the linear harmonic oscillator and it is given as

which is

£(t) = sin (wt + 9) _ (21)

2m+1)a m m 2m+1 cos ((2m+1—-2k)(wt+6 2mF1
S E—— ETXIy pee—
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The corresponding system is called isochronous system which takes the form
i+ ao((2m + 3)3 + agr®™ ) 2?1 4 w?x = 0. (22)
Particularly, when m = 0, Eq. (22) becomes the modified Emden equation
&+ 3aprd + ale® + w?z =0, (23)

extensively studied by Chandrasekar et al. [19, 21], which admits the amplitude independent isochronous
solution

sin (wt + )
x(t) = . (24)
I + %0 cos(wt + 6)
One can also note that on fixing m = —3/2 in Eq. (22), we get the well known Ermakov-Pinney equation
22, 23]
i+ ale™? + Wi = 0. (25)
It admits the general solution
in (wt +
2(t) = sin (wt + ) (26)

- T+ % cos(wt 4 6)°

8.2. Special function solution of nonlinear ODFEs

To illustrate the above method further, in the following, we consider three forms of Eqs. (3), namely the
Hermite equation, the Legendre equation and the Laguerre equation and identify the corresponding nonlinear
equations and present their associated solutions. For simplicity, we consider the form of h(z,t) = x in all
the three cases.

3.2.1. Hermite equation
To begin with, let us choose the Hermite’s differential equation which is given by

W — 2tw + 2nw = 0. (27)
Comparing Eq. (27) with Eq. (3), we find
Q(t,w,w) = 2tw — 2nw. (28)

Substituting the above Hermite form (28) into Eq. (8), we arrive at the following nonautonomous nonlinear
ODE, namely

i = 2t(i 4 2?) — 3xi — 2° — 2na. (29)

To find the solution of this nonlinear ODE we recall the Rodrigues’ formula for the Hermite polynomial,
that is
n 2 d"

wa() = (=1)"e" (e, (30)

Substituting the above solution (30) into equation (11) and integrating it, we get

T (t) = wn(t) (I, + /Ot wy(t)dt) (31)
where I, represents the integration constant. Using the following recurrence relation,
dwp41/dt = 2(n + 1)wy, (32)
Eq. (31) can be explicitly integrated to yield
T (t) = 2(n + Vwy (t) (I + wny1) 7, (33)

where I, > |m,,|. Here |m,| is the maximum root value of the equation w,+; = 0. Equation (33) represents
the solution of the nonlinear ODE (29). Figure 1 shows the behaviour of the solution for the case n = 0,1, 2.
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Figure 1: (Color online) The solutions of the nonlinear equation (29) for three different n values (n = 0,1,2) for Iy = 0.1,
.[1 = 2.1 and Iz = 6.

3.2.2. Legendre equation
In the second choice, we choose the Legendre’s differential equation

(1 — %)t — 2t + n(n + L)w = 0. (34)

From (34), we fix the expression for @) as (vide Eq.(3))

Qt, w, 1) = ﬁ(zm —n(n+1))w. (35)

Now we substitute the above Legendre form into (8). Doing so, we obtain

(& 4 2?) — 3z — o — nintl) (36)

&= P(t,x,&) = [

1—¢2

To derive the solution of the above nonlinear ODE, we recall the solution of Legendre’s equation in Rodrigues’
form, that is

1 a
—onpl dtn

wy (1) [(t2 —1)"). (37)

Substituting the above expression into equation (11) and integrating the resultant equation, we get

T (t) = wn (t)(I + /O wy (t)dt) 1, (38)

where I, represents the integration constant and w, is the Legendre’s polynomial of order n. Using the
following recurrence relation

dwy41/dt — dwy,—1/dt— = (2n + 1)w, (39)
equation (38) can be integrated explicitly to yield

(2n + 1wy, (t)
(In + Wp41 — wnfl)

Tn(t) = ; (40)
where I,, > |my|. Here |my,| is the maximum root value of the equation w41 — w,—1 = 0. One may verify
that ((40) satisfies the nonlinear ODE (36) by direct substitution. For the case n = 0,1, 2 the solution (40)
is plotted in Fig. 2.
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Figure 2: (Color online) The solutions of the nonlinear equation (36) for three different n values (n = 0,1,2) for Iy = I, = I =
-0.7.

3.2.8. Laguerre equation
Finally we consider the Laugerre’s differential equation

tw — (t — 1)w + nw = 0. (41)
For this case the function ) reads
1
QU wyib) = 5 (¢ = 1) — muw) (42)

As we did in the earlier two cases, we substitute the Laguerre form (41) into equation (8). We arrive the
nonlinear ODE with

t—1
Pt i) = ¢ t ) (i + 2%) — 320 — 2 — %x (43)

To find the solution of the nonlinear ODE in terms of the Laguerre function, we recall the Rodrigues’ formula
for the Laguerre function

wp(t) = et%;(t"e*t). (44)

Substituting this into equation (11) and integrating it we get
t
T (t) = wy(t) (1 + / wy (t)dt) L (45)
0
To integrate (45), we recall the following recurrence relation
(n + 1)dwy, /dt — dwyi1/dt— = (n + 1)w,,. (46)

Subsituting (46) into (45) and integrating , we obtain

2 (t) = wn () (I + wn — (Z”fi) )L, (47)

where I,, > |my,| for n even and I,, < |m,,| for n odd. Here |m,| is the maximum root value of the equation

Wy, — Z:’}LTII) = 0. The solution of the equation (43) for n =0, 1,2 is given in Fig. 3.
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Figure 3: (Color online) The solutions of the nonlinear equation (43) for three different n values (n = 0,1,2) for Io = 0.1, I, = —1

and I, = 1.5.

3.5. Nonlinear to nonlinear ODFEs

Let us consider the nonlinear equation arising in general relativity [24]

wis = 3 + ==
Eq. (48) admits the general solution

1
(I — I1t2)’

w =
where I1 and Iy are arbitrary constants. Now substituting equation (48) into (8), we get
i = —(2h + xhy)ai + (he + 22 + 3(6 + h + %)(:i: +h),
where h = h(z,t), and the solution of (50) can be derived from
T+ h(z,t)r = gaz = —Itx.
When h(z,t) = a(t)z™ + b(t), Eq. (51) becomes
&= —a(t)z" — (b(t) + I1t)x,
and the solution of the equation (52) is given by

o fot/ (b(#)+I1t")dt!

(t) =

|

n

I+n fg/(a(t,)e_nf()z//(b(t//)+11t,,)dt/,)dt/>
When a(t) = a(constant) and b(t) = b(constant), the solution takes the form

o~ (bt 442

x(t) = .

T
N Vab+Lt) | "
(I + AL e 2n erf[TIl1 ] )

where erf is the Gauss error function. When h(zx,t) = az™ + b, Eq. (50) becomes

zi = —((2 4 n)az" + 2b)xi + (az™ + b)*2x* 4 3(& 4 az™ + b + +%)(:z: + az™ +b).

(48)

(49)

(50)

(53)

(54)
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4. Method: Third order nonlinear ODE

One can extend the above study to third order and higher order ODEs as well. Here we indicate the
general method to third order ODEs only, for brevity. Let us consider a third order nonlinear ODE

i = P(t,x, i, %), (56)

where dot denotes differentiation with respect to time and P is function in ¢, x, £and #. Let us assume that
the ODE (56) admits a solution of the form

(t) = w(t)/s(t), (57)
where w is the solution of a following differential equation
W= Q(t, w, w, ), (58)
and the function s(t) satisfies
$=h(x,t)s. (59)

Differentiating the equation (57) with respect to ¢ and using the equations (58) and (59) in it we obtain
the following equations, that is

T+ hr =w/s. (60)
i+ (2h + xhy)id + (he + h?)x = /5. (61)
and
P(t,x,3,%) 4+ (3h + 2hy)d + (3hy + xhey ) + (3hy + 3h% + (2 + 2)hhy
+(x + V) xhgy)d + (het + 3hhe + b3z = Q(t, w, w,w)/s. (62)
If @ satisfies homogenous relation, that is
Q(t,rz,re,ri) =rQ(t,x, &, 1), (63)

then equation (62) can be written as,

x

T = Q(t,x, 4 + ha, i + (2h + xhy)d + (hy + h*)x) — (3h + zhy)
—(3hy + whyy)i® — (3hy + 3h* + (24 2)hhy + (z + V) why)®

—(hyt + 3hhs + h3)z. (64)
The general form of () that satisfies relation (63) is
o e ..2 . 2
Q(t, w, v, ) = a(t)% + b(t)% + c(t)% + ()i + e(t) + f(t)w. (65)
From equations (57) and (60) we obtain
Srodth@be @ (66)
w w
Rewriting Eq. (66), we again find
Ly 1) = 0 (67)
o (n— x,t) =0.

Using the above equations, we can again solve appropriate third order nonlinear differential equations.
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5. Conclusion

In this work, we have pointed out a specific method of finding the general solution of a class nonlinear
ODEs. In particular we have brought out specific forms of nonlinear ODEs that admit isochronous solutions,
limit-cycle solutions and special functions as their solutions. To integrate certain integrals we recalled
Rodrigues’ formula and suitable recurrence relations of the considered special functions. Interestingly now
one may start investigating the properties of specific families of nonlinear ODEs and their solutions. For
example, it is well known that the Hermite’s, Legendre’s and Laguerre’s equations are all Sturm-Liouville
type and self adjoint equations. Now one may investigate the self adjointness and Sturm-Liouville nature
of the nonlinear ODEs as well. One can extend the study to third order as well as to higher order ODEs as
well. A detailed study will be presented elsewhere.
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