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Abstract

The problem of existence and uniqueness of solutions of initial value problems associated with a nonlinear
fractional dynamic equation of Caputo type on an arbitrary time scale of order α > 0 is stated as a fixed
point problem on a metric-like space. The initial conditions are assummed to be homogeneous. A theorem
on the existence and uniqueness of a solution of the problem is stated and proved. Examples on two different
time scales verifying the theoretical findings are presented and numerical computation of several initial terms
of the iterative sequence of approximations is included.
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1. Introduction

Fractional differential calculus remains as one of the most studied areas of applied mathematics due to its
extensive application potential [18, 19, 20, 21]. In addition to the fractional derivatives of Riemann-Liouville
and Caputo type, new types of fractional derivatives have been defined and various real life problems have
been modelled by using these new types of derivatives [5, 16].

The concept of fractional derivative has also been carried on to time scales [4, 6, 13]. The dynamic
equations which succesully unify the differential and difference equations, have been extended to fractional
dynamic equations of Riemann-Liouville and Caputo type and investigated from different aspects by many
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authors [3, 12, 17]. In a very recent book by Georgiev [13], the fractional dynamic calculus and fractionl
dynamic equations have been introduced in a detailed and complete way.

Also recently, the problem of existence and uniqueness for fractional dynamic equations and associated
initial and boundary value problems have been studied and some results appeared in the literature [15, 23, 11].

In this study, we discuss the existence and uniqueness of an initial value problem for a fractional dynamic
equation of Caputo type of arbitrary order with homogeneous initial conditions, given as{ CDα

∆,t0
u(t) = f(t, u(t)), t ∈ T,

CDk
∆,t0

u(t) = 0, k ∈ {0, . . . ,m− 1}, (1)

where α > 0, m = −[−α], f : T×R→ R is a given function and T = [a, b]T is a time scale interval containing
t0. By converting the problem into an integral equation of Volterra type, we state the problem as a fixed
point problem for the associated integral operator. Employing the fixed point results on metric-like spaces,
we prove an existence and uniqueness theorem for the solution of the initial velue problem.

The presentation is organizated as follows. Next section is devoted to the definition of preliminary
notions and the fractional derivative on arbitrary time scale. In section 3, the metric-like spaces and the
relevant theoretical results are introduced. The existence and uniqueness of the initial value problem (1) is
studied in Section 4 and followed by numerical examples. Conlusion is given in the last section.

2. Brief discussion on fractional derivative on time scales

We start with the presentation of the main concepts which are involved in the definition of fractional
derivative on time scales. For the introductory information and the basics of calculus on time scales we refer
the reader to [7, 8, 9].

The fractional derivative on time scale have been defined in two different ways: by means of the usual
power function, that is, hα(t, s) = (t− s)α, see [3], and by means of the generalized power functions hα(t, s)
whose form depends on the time scale, see [13].

In this study, we employ the second form which is more general.
On the rest of the section, T will denote an arbitrary time scale, σ, µ and ∆ will denote the forward

jump operator, graininess function and delta differential operator, respectively.
The time scale monomials will be denoted and defined as

h0(t, s) = 1, hn(t, s) =

∫ t

s
hn−1(t, y)∆y, n ∈ N0.

Next, we recall the definitions of regressive functions and the generalized exponential function on time
scales.

Definition 2.1. [9]

1. A function g : T→ R is called regressive if

1 + µ(t)g(t) 6= 0 for all t ∈ Tκ.

2. The set of all regressive functions on a time scale T is denoted by R.

3. For a function g ∈ R, the generalized exponential function is defined and denoted by

eg(t, s) = e
∫ t
s

1
µ(τ)

Log(1+µ(τ)g(τ))∆τ
for s, t ∈ T.

where Log is the principal logarithm function.

Detailed information on the generalized exponential function and its properties can be found in [7, 9].
We also recall the definitons of the Laplace transform, shift and convolution on time scales.
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Definition 2.2. [13] Let T0 be a time scale containing 0 and for which supT0 =∞.
The Laplace transform of the function g : T0 → C is defined as

L(g)(w) =

∫ ∞
0

g(y)eσ	w(y, 0)∆y, (2)

for all w ∈ D(g), where D(g) is the set

D(g) = {w ∈ C : 1 + wµ(t) 6= 0 for all t ∈ T0

and the improper integral

∫ ∞
0

g(y)eσ	w(y, 0)∆y exists

}
.

Note that here we used the notation 	w = − w
1+wµ(t) and fσ = f ◦ σ on time scales.

Definition 2.3. [13] Let g : T→ C. The shift (delay) of g is denoted by ĝ and is the solution of the shifting
problem {

v∆t(t, σ(s)) = −v∆s(t, s), t ∈ T, t ≥ s ≥ t0,
v(t, t0) = g(t), t ∈ T, t ≥ t0.

(3)

Definition 2.4. [13] The convolution f ∗ g of the functions f, g : T→ C is defined as

(f ∗ g)(t) =

∫ t

t0

f̂(t, σ(s))g(s)∆s, t ∈ T, t ≥ t0. (4)

The Laplace transform, shift and convolution are explained in details in [13].
Finally, we define the generalized and fractional generalized ∆-power functions on time scales. These

notions are defined on a time scale of the form

T = {tn : n ∈ N0},

where
lim
n→∞

tn =∞,
σ(tn) = tn+1, n ∈ N0,
inf
n∈N0

µ(tn) > 0.

Definition 2.5. [13] Let α ∈ R

1. The generalized ∆-power function hα(t, t0) on T is defined as

hα(t, t0) = L−1

(
1

zα+1

)
(t), t ≥ t0,

for all z ∈ C\{0} such that L−1 exists.

2. The fractional generalized ∆-power function hα(t, s) on T is defined as the shift of hα(t, t0), that is,

hα(t, s) = ̂hα(·, t0)(t, s), t, s ∈ T, t ≥ s ≥ t0.

From the definition, the fractional generalized ∆-power functions on the time scales R and Z are obtained
as follows.

Example 2.6. [13]

1. Let T = R. Then

hα(t, s) =
(t− s)α

Γ(α+ 1)
, t ≥ s.
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2. Let T = N0. Then

hα(t, s) =
(t− s)(α)

Γ(α+ 1)

=
Γ(t− s+ 1)

Γ(α+ 1)Γ(t− s+ 1− α)
, t ≥ s.

It remains to define the Riemann-Liouville and Caputo fractional ∆-integral and ∆-derivative on a
time scale T having the form given above. As mentioned above, these definitions require the definition of
generalized ∆-power function.

Definition 2.7. [13] Let α ≥ 0 denotes the order of the derivtive and m = −[−α], that is, the integer part
of −α. Let g : T→ R.

1. The Riemann-Liouville fractional ∆-integral of order α for the function g is defined as

(I0
∆,t0g)(t) = g(t),

(Iα∆,t0g)(t) = (hα−1(·, t0) ∗ g)(t)

=

∫ t

t0

̂hα−1(·, t0)(t, σ(u))g(u)∆u

=

∫ t

t0

hα−1(t, σ(u))g(u)∆u, α > 0, t ≥ t0.

(5)

2. For s, t ∈ Tκm, s < t the Riemann-Liouville fractional ∆-derivative of order α is defined as

Dα
∆,sg(t) = Dm

∆I
m−α
∆,s g(t), t ∈ T, (6)

if it exists.
3. For α < 0, we define

Dα
∆,sg(t) = I−α∆,sg(t), t, s ∈ T, t > s.

Iα∆,sg(t) = D−α∆,sg(t), t, s ∈ Tκ
r
, t > s, r = [−α] + 1.

(7)

Remark 2.8. If we note that the generalized ∆ power function hα(t, t0) on the set of real numbers R is

hα(t, t0) =
(t− t0)α

Γ(α+ 1)
, t ≥ t0,

we observe that if T = R, that is, if ∆ derivative is replaced by the classical derivative, the Riemann-Liouville
fractional ∆-derivative defined in (6) becomes the usual Riemann-Liouville fractional derivative.

Finally, we define Caputo fractional ∆-derivative in terms of the previous definitions as follows.

Definition 2.9. [13] For a function g : T→ R the Caputo fractional ∆-derivative of order α is denoted by
CDα

∆,t0
and defined via the Riemann-Liouville fractional ∆-derivative of order α as follows

CDα
∆,t0 = Dα

∆,t0

(
g(t)−

m−1∑
k=0

hk(t, t0)g∆k
(t0)

)
, t > t0, (8)

where m = [α] + 1 if α /∈ N and m = [α] if α ∈ N.

The following theorem provides an alternative representation of the Caputo fractional ∆-derivative (see
Theorem 7.1 in [13]).

Theorem 2.10. Let α > 0, m = [α] + 1 if α /∈ N and m = α, if α ∈ N.

1. If α /∈ N then
CDα

∆,t0g(t) = Im−α∆,t0
Dm

∆,t0g(t), t ∈ T, t > t0.

2. If α ∈ N then
CDα

∆,t0g(t) = g∆m
(t), t ∈ T, t > t0.

Remark 2.11. Regarding the result of the Theorem 2.10, if T = R, the Caputo fractional ∆-derivative
defined in (8) becomes the usual Caputo fractional derivative.
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3. Review on metric like spaces

In this section, we recall the basics on metric-like spaces. The initial value problem (1) will be stated as
a fixed point problem in the framework of metric-like space. Accordingly, we need to review the concept of
metric-like and some properties of metric-like spaces.

Metric-like spaces have been defined initially by Amini-Hanrandi [1] and later, used by several authors to
introduce a new classes of generalized contractive mappings in order to study the existence and uniqueness of
the solution of certain differential and integral equations (see [22, 14, 2]). The metric-like and the metric-like
space are defined as follows.

Definition 3.1. [1]. Let X be a nonempty set. A a function ρ : X ×X → [0,∞) is a metric-like on X, if
it satisfies the following conditions for all v, u, w ∈ X.

(ρ1) If ρ(v, u) = 0 then v = u;

(ρ2) ρ(v, u) = ρ(u, v);

(ρ3) ρ(v, u) ≤ ρ(v, w) + ρ(w, u).

The pair (X, ρ) is then called a metric-like space.

A thorough information on metric-like spaces can be found in [1]. Some metric-like spaces are presented
in the next example.

Example 3.2. [22]. Let ρj : R× R −→ [0,+∞), for j = 1, 2, 3 be functions defined as follows.

1. ρ1(v, u) = |v|+ |u|+ a , a ≥ 0;

2. ρ2(v, u) = |v − b|+ |u− b| , b ∈ R;

3. ρ3(v, u) = v2 + u2.

Then ρ1, ρ2 and ρ3 are all metric-likes on R.

Remark 3.3. Observe that ρj(v, v), j = 1, 2, 3 in the previous Example may not be 0 for v ∈ R, and
consequently metric-like spaces are not metric spaces, in general.

The following concepts were introduced by [1] in the setting of metric-like spaces.

• Each metric-like ρ on X generates a topology on X whose base is the family of open ρ balls

Bρ(v, ε) = {u ∈ X : |ρ(v, u)− ρ(v, v)| < ε}, for all v ∈ X and ε > 0.

• A sequence (vn)n≥0 in metric-like space (X, ρ) converges to v ∈ X if and only if

lim
n−→∞

ρ(vn, v) = ρ(v, v).

• A sequence (vn)n≥0 ⊂ X is called ρ-Cauchy sequence if

lim
n,m−→∞

ρ(vn, um) exists and is finite.

• A metric-like space (X, ρ) is said to be complete if for each ρ-Cauchy sequence (vn)n≥0, there exists
v ∈ X such that

lim
n−→∞

ρ(vn, v) = ρ(v, v) = lim
n,m−→∞

ρ(vn, vm).
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Remark 3.4. The fact that in metric-like spaces, the limit of a convergent sequence is not necessarily
unique, is demonstrated by an example in [1].

The following result was established in [1](Theorem 2.11) and provides the existence and uniqueness of fixed
point for contractive mappings defined on complete metric-like spaces.

Theorem 3.5. [1]. Let (X, ρ) be a complete metric-like space and let T : X −→ X be a mapping satisfying

ρ(Tv, Tu) ≤ α(ρ(v, u))ρ(v, u),

for all v, u ∈ X with v 6= u where α : (0,∞)→ (0, 1) is a nonincreasing functon. Then T has a unique fixed
point in X.

In our studies we make use of it for the particular choice of α, that is, α(t) = k with 0 < k < 1.

4. Existence-uniqueness of Cauchy problems with Caputo fractional derivative on time scales

This section contains the main result and its applications to specific examples. For the rest of the
discussion, we suppose that T is a time scales with forward jump operator σ, delta derivative operator ∆,
and delta differentiable graininess function µ. In addition, we assume that T has the form

T = {tn : n ∈ N0},

where
lim
n→∞

tn =∞,
σ(tn) = tn+1, n ∈ N0,
inf
n∈N0

µ(tn) > 0.

We also assume that T is a closed interval on the time scale T having the form T = [a, b]T. As we stated
in the introduction, we consider the initial value problem (1) for a fractional dynamic equation with Caputo
fractional ∆-derivative given as{ CDα

∆,t0
u(t) = f(t, u(t)), t ∈ T,

CDk
∆,t0

u(t) = 0, k ∈ {0, . . . ,m− 1},

Here CDα
∆,t0

denotes the Caputo fractional ∆-derivative, α > 0 and m = −[−α]. Also, f : T× R → R is a
given function and T = [a, b]T is a time scale interval containing t0.

The right-dense absolutely continuous functions on time scales are defined as follows.

Definition 4.1. [13] Let J be a time scale interval and f : J → R. If for every ε > 0 there exists δ > 0
such that

n∑
i=1

|f(ci)− f(di)| < ε,

whenever a disjoint collection of time scale intervals [ci, di) ⊂ J, i = 1, . . . n satisfies

n∑
i=1

(di − ci) < δ,

then the function f is called right-dense absolutely continuous on the time scale interval J and we write f ∈
AC∆(J). If in addition, f∆l ∈ AC∆(J) for every l = 0, 1, . . . , k and some fixed k ∈ N0, then f ∈ ACk∆(J).

The initial value problem (1) can be written as an integral equation. This conversion is given in the next
theorem and its proof can be found in [13].
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Theorem 4.2. [13] Let D ⊂ R be an open set, T = [a, b]T be a time scale interval containing t0 and let
f : T ×D → R be a function such that for all u ∈ D, f(., u) ∈ AC∆(T ). Then u ∈ ACm∆ (T ) is a solution of
the problem (1) if and only if it is a solution of the Volterra integral equation

u(t) =

∫ t

t0

hα−1(t, σ(τ))f(τ, u(τ))∆τ. (9)

We will prove an existence and uniqueness theorem for the solution of the initial value problem (1) in
the setting of metric-like spaces.

Let X = AC∆(T ) and propose a metric-like ρ on X of the form

ρ(v, u) = sup
t∈T

(|v(t)|+ |u(t)|). (10)

Then (X, ρ) is a complete metric-like space.
Define a mapping S as

Su(t) =

∫ t

t0

hα−1(t, σ(τ))f(τ, u(τ))∆τ. (11)

If f(t, u(t)) ∈ AC∆(T ) then the right hand side of the integral equation is a function in AC∆(T ). Thus,
S : AC∆(T )→ AC∆(T ) holds. Then a solution of the problem (1) is a fixed point of S.

Now we state and prove an existence-uniqueness theorem for the solution of the problem (1).

Theorem 4.3. Let D ⊂ R be an open set, T = [a, b]T be a time scale interval containing t0 and let the
function f : T ×D → R be absolutely continuous, that is, f(t, u(t)) ∈ AC∆(T ) and u ∈ ACm∆ (T ). Assume
also that

|hα−1(t, σ(τ))| ≤M, (12)

for some M > 0 and that f satisfies the condition

|f(t, u(t))| ≤ L|u(t)|, for all t ∈ T and u ∈ D. (13)

where 0 < 2ML(b− t0) < 1. Then the Cauchy problem (1) has a unique solution.

Proof. We consider the map S defined in (11). If the function f(t, u(t)) ∈ AC∆(T ) then it is ∆-integrable
and the right hand side of the integral equation is an absolutely continuous function. Thus, S is a self map
on AC∆(T ). Using the conditions (12) and(13), we make the following estimate for any v ∈ ACm∆ (T ).

|Sv(t)| =

∣∣∣∣∫ t

t0

hα−1(t, σ(τ))f(τ, v(τ))∆τ

∣∣∣∣
≤

∫ t

t0

|hα−1(t, σ(τ))| |f(τ, v(τ))|∆τ

≤ M

∫ t

t0

|f(τ, v(τ))|∆τ

≤ ML

∫ t

t0

|v(τ)|∆τ.

This implies that for u, v ∈ ACm∆ (T ),

|Sv(t)|+ |Su(t)| ≤ 2ML

∫ t

t0

|u(τ)|+ |v(τ)|∆τ,

Taking supremum of both sides we conclude

sup
t∈T

(|Sv(t)|+ |Su(t)|) ≤ 2ML(b− t0) sup
t∈T

(|v(t)|+ |u(t)|) ,
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or by means of metric-like,
ρ(Sv(t), Su(t)) ≤ λρ(v(t), u(t)),

with 0 < λ = 2ML(b− t0) < 1, from which it follows that the map S defined in (11) satisfies the conditions
of the Theorem 3.5 and hence, has a unique fixed point, that is, the initial value problem (1) has a unique
solution.

We apply the result of Theorem 4.3 to specific examples in order to confirm the existence and the
uniqueness of solution. In addition, we compute few terms of the sequence of Picard iterations in order to
observe its behaviour.

Example 4.4. Let T = N and T = [t0, b] = [1, 10] = {1, 2, 3, ..., 10} be a time scale interval of T. Consider
the Cauchy problem  CD

3/4
∆,1u(t) =

te−t

40
sinu(t), t ∈ T,

CD0
∆,1u(t) = u(1) = 0.

(14)

We have α =
3

4
and m = −[−3

4
] = 0. On this time scale the fractional generalized ∆-power function is

given as [13],

hα(t, s) =
Γ(t− s+ 1)

Γ(α+ 1)Γ(t− s+ 1− α)

so that we have

hα−1(t, s) = h−1/4(t, s) =
Γ(t− s+ 1)

Γ(3
4)Γ(t− s+ 5

4)
.

Then, using the fact that on the time scale N, the graininess function is µ(t) = 1 and∫ b

a
g(y)∆y =

b−1∑
k=a

g(k)µ(k) =
b−1∑
k=a

g(k),

we compute ∫ t

0
|h−1/4(t, σ(τ))|∆τ ≤

∫ 10

0
|h−1/4(t, τ + 1)|∆τ

=

∫ 10

0

∣∣∣∣∣ Γ(t− τ)

Γ(3
4)Γ(t− τ + 1

4)

∣∣∣∣∣∆τ
=

9∑
k=0

∣∣∣∣∣ Γ(10− k)

Γ(3
4)Γ(10− k + 1

4)

∣∣∣∣∣
≈ 5.4134,

that is, M = 5.4134. On the other hand,

|f(t, v(t)| =

∣∣∣∣ te−t40
sin v(t)

∣∣∣∣
=

te−t

40
| sin v(t)|,

Since te−t ≤ 1

e
for t > 0, it follows that

|f(t, v(t)| ≤ 1

40e
|v(t)|,

that is, L = 1
40e , which implies 0 < 2ML(b− t0) ≈ 0.8964 < 1. Then the conditions of Theorem 4.3 hold

and the initial value problem has a unique solution.
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Table 1: The values of uj(t), i = 0, 1, 2, 3 with u0(t) = t−1
10t

on [1, 10]T.

ti u0(ti) u1(ti) u2(ti) u3(ti)

1 0.00000000 0.00000000 0.00000000 0.00000000
2 0.05000000 0.00000000 0.00000000 0.00000000
3 0.06666667 0.00030448 0.00000000 0.00000000
4 0.07500000 0.00046754 0.00000102 0.00000000
5 0.08000000 0.00051924 0.00000159 0.00000000
6 0.08333333 0.00051857 0.00000174 0.00000000
7 0.08571429 0.00049932 0.00000171 0.00000000
8 0.08750000 0.00047630 0.00000163 0.00000000
9 0.08888889 0.00045480 0.00000155 0.00000000
10 0.09000000 0.00043617 0.00000147 0.00000000

To observe the behaviour of the Picard sequence of successive approximations, we computed the first 3
terms of the sequence for two different initial terms u0(t).

First, we took u0(t) = t−1
10t and computed uj(t), for j = 1, 2, 3 using

uj(t) = Suj−1(t) =

∫ t

1

1

40
h− 1

4
(t, τ + 1)τe−τ sin(uj−1(τ))∆τ.

Figure 1 shows the the graphs of uj(t), for j = 0, 1, 2, 3 for u0(t) = t−1
10t . In Table 1, we listed the computed

values of uj(t), for j = 0, 1, 2, 3 for u0(t) = t−1
10t .
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0.08

u-
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is

u0
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u2

Figure 1: The graphs of uj(t), i = 0, 1, 2, 3 for u0(t) = t−1
10t

.

Our second choice for an initial term of the Picard sequence is u0(t) = 1−t2
10t3

, which takes negative values
on the interval [1, 10]T. We computed uj(t), for j = 1, 2, 3 from the same relation as above. Figure 2 shows

the the graphs of uj(t), for j = 0, 1, 2, 3 for u0(t) = 1−t2
10t3

. In Table 2, we listed the computed values of uj(t),

for j = 0, 1, 2, 3 for u0(t) = 1−t2
10t3

.

As a second example, we consider an initial value problem on the time scale of the form T = aN0 which
is used in applications of problems defined on evenly spaced discrete sets with arbitrary spacings.
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Figure 2: The graphs of uj(t), i = 0, 1, 2, 3 for u0(t) = 1−t2
10t3

.

Table 2: The values of uj(t), i = 0, 1, 2, 3 with u0(t) = 1−t2
10t3

on [1, 10]T.

ti u0(ti) u1(ti) u2(ti) u3(ti)

1 0.00000000 0.00000000 0.00000000 0.00000000
2 -0.03750000 0.00000000 0.00000000 0.00000000
3 -0.02962963 -0.00022841 0.00000000 0.00000000
4 -0.02343750 -0.00028232 -0.00000077 0.00000000
5 -0.01920000 -0.00028074 -0.00000108 0.00000000
6 -0.01620370 -0.00026622 -0.00000113 0.00000000
7 -0.01399417 -0.00025103 -0.00000109 0.00000000
8 -0.01230469 -0.00023799 -0.00000104 0.00000000
9 -0.01097394 -0.00022725 -0.00000099 0.00000000
10 -0.00990000 -0.00021841 -0.00000094 0.00000000

Example 4.5. Let T =
1

4
N0 and T = [t0, b] = [0, 5]T. Consider the initial value problem CD

11/2
∆,0 u(t) =

1

400(1 + t2)
ln(1 + |u(t)|), t ∈ T,

u(0) = 0, u∆(0) = 0, . . . , u∆(4)
= 0.

(15)

Here we have α =
11

2
and m = −[−11

2
] = 5. On the time scale the fractional generalized ∆-power function

is given as [13].

hα(t, s) =
Γa(t− s+ aα)

Γ(α+ 1)Γa(t− s))

where a =
1

4
. The function Γa for time scale aN0 is given as by [10],

Γa(x) =

∫ ∞
0

tx−1e−(ta/a)dt

and one can easily see that it is related to the classical Gamma function by

Γa(x) = a
x
a
−1Γ(x/a).
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Hence, the generalized ∆-power function on aN0 becomes

hα(t, s) =
a
t−s+aα

a
−1Γ( t−s+aαa )

Γ(α+ 1)a
t−s
a
−1Γ( t−sa )

=
aαΓ( t−sa + α)

Γ(α+ 1)Γ( t−sa )

so that we have

h9/2(t, s) =
(1/4)

9
2 Γ(4(t− s) + 9

2)

Γ(11/2)Γ(4(t− s)
.

Then, using the fact that on the time scale aN0, we have µ(t) = a, σ(t) = t+ a and∫ d

c
g(y)∆y =

d/a−1∑
k=c/a

g(k)µ(k) = a

d/a−1∑
k=c/a

g(k),

we compute ∫ t

0
|h9/2(t, σ(τ))|∆τ =

∫ t

0
|h9/2(t, τ + 1/4)|∆τ

≤
∫ 5

0
|h9/2(t, τ + 1/4)|∆τ

=
1

4

19∑
k=0

∣∣∣∣∣ (1/4)
9
2 Γ(20− k + 7

2)

Γ(11/2)Γ(20− k − 1)

∣∣∣∣∣
=

(1/4)
11
2

Γ(11
2 )

19∑
k=0

∣∣∣∣∣Γ(20− k + 7
2)

Γ(20− k − 1)

∣∣∣∣∣
≈ 33.37,

that is, M = 33.37. Also,

|f(t, v(t)| =
1

400(1 + t2)
|ln(1 + |v(t)|)|

≤ 1

400
|v(t)|,

due to the fact that ln(1 + |x|) ≤ |x|. Then L = 1
400 and hence, 0 < 2ML(b− t0) = 334

400 = 0.835 < 1. Then
the conditions of Theorem 4.3 hold and the problem has a unique solution. To observe the behaviour of the
Picard sequence of successive approximations, we computed the first 3 terms of the sequence for the initial
terms u0(t) = t5

20(1+t3
.

We computed uj(t), for j = 1, 2, 3 using

uj(t) = Suj−1(t) =

∫ t

1

1

400
h 9

4
(t, τ +

1

4
)

1

1 + τ2
ln(1 + |uj−1(τ)|)∆τ.

Figure 3 shows the the graphs of uj(t), for j = 0, 1, 2, 3 for u0(t) = t5

20(1+t3)
. In Table 3, we listed the

computed values of uj(t), for j = 0, 1, 2, 3 for u0(t) = t5

20(1+t3)
.

5. Conclusion

In this paper, an initial value problem with homogeneous initial conditions for a fractional dynamic
equation on time scale is studied in the framework of metric-like space. Conditions for existence and
uniqueness of the solution given in the main theorem are very easy to check, in comparison with the
conditions given in other theorems existing in the literature. The results are supported by examples and
numerical calculations.

˙Inci M. Erhan, Nadjeh Redjel, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 81–93. 91



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t-axis

0

0.5

1

1.5

y-
ax

is

u0
u1
u2
u3

Figure 3: The graphs of uj(t), i = 0, 1, 2, 3 for u0(t) = t5

20(1+t3)
.

Table 3: The values of uj(t), i = 0, 1, 2, 3 with u0(t) = t5

20(1+t3)
on [0, 5]T.

ti u0(ti) u1(ti) u2(ti) u3(ti)

0.00 0.00000000 0.00000000 0.00000000 .00000000
0.25 0.00004808 0.00000000 0.00000000 0.00000000
0.50 0.00138889 0.00000000 0.00000000 0.00000000
0.75 0.00834478 0.00000011 0.00000000 0.00000000
1.00 0.02500000 0.00000340 0.00000000 0.00000000
1.25 0.05166997 0.00003059 0.00000000 0.00000000
1.50 0.08678571 0.00015867 0.00000001 0.00000000
1.75 0.12904638 0.00059137 0.00000006 0.00000000
2.00 0.17777778 0.00176426 0.00000037 0.00000000
2.25 0.23269625 0.00448385 0.00000178 0.00000000
2.50 0.29370301 0.01009854 0.00000683 0.00000000
2.75 0.36077733 0.02069837 0.00002231 0.00000000
3.00 0.43392857 0.03934097 0.00006403 0.00000001
3.25 0.51317586 0.07030064 0.00016574 0.00000004
3.50 0.59853989 0.11933820 0.00039393 0.00000015
3.75 0.69003980 0.19398935 0.00087156 0.00000046
4.00 0.78769231 0.30386917 0.00181382 0.00000128
4.25 0.89151158 0.46099137 0.00357995 0.00000331
4.50 1.00150950 0.68010015 0.00674506 0.00000801
4.75 1.11769600 0.97901358 0.01219615 0.00001830
5.00 1.24007937 1.37897698 0.02125590 0.00003978
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