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Abstract: In our research, we focus on the existence, non-existence, and multiplicity

of positive solutions to a Quasilinear Schrddinger equation in the form:

—Au + Au+ ; [Aw?)]u=f(u), ueH (RY)

With prescribed mass:
Jyw Iul?dx = c,

Here N > 3, The dual approach is used to transform this equation into a corresponding semi-
linear form. Then, we implement a global branch approach, adeptly handling nonlinearities
f(s) that fall into mass subcritical, critical, or supercritical categories. Key aspects of this
study include examining the positive solutions' asymptotic behaviors as A - 0*tor A —» +oo
and identifying a continuum of unbounded solutions in (0, +o0) x HY(RY).

Keywords: Quasilinear Schrodinger equation; Global Branch; Positive Normalized Solution

1. Introduction
1.1. Background and Motivation

In this work, we engage in a comprehensive analysis of quasilinear Schrédinger equation
(QLSE), a subject that has gained considerable traction in mathematical physics due to its
complex nature and broad applications. Central to our study are the solutions which conform
to the equation:

—Au + lu + g [A(u®)]u = f(u),

f |lul?dx = c,
RN

where A appears as a Lagrange multiplier. This exploration, situated within the functional

N
,  x€R (1.1)
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HY'(RY) = {u € L*(R"):Vu € L*(RV)}.
under the constraint:
Y(c) = {u € HY(RY) |fR,\,k|Vu|2u2 dx < oo, [lull?2 = c}.
The exploration of solutions to (1.1) is intricately connected with the identification of standing

wave solutions, which are essential for a comprehensive understanding of the behavior of the
time-dependent quasilinear Schrodinger equation. This specific equation can be expressed as:

10z = =0z = 1(|2|Dz + S [8p(121D]p' (|2)z, (%) € RF X RY (1.2)

Here, i symbolizes the imaginary unit. The function z: R x RN — C, Land p are real-valued

functions.
Equations of this form, as described in (1.2), frequently emerge in the field of mathematical

physics and have been applied as mathematical models in various physical contexts,
particularly where the nonlinear term p is involved. For instance, the specific case of p(s) = s
has been utilized in plasma physics to model the superfluid film equation, as discussed by
Kurihara [6]. For I(s) = asP, (1.2) appears in various problems in plasma physics and
nonlinear optics, e.g. oscillating soliton instabilities during microwave and laser heating of

plasma [36,37]. (1.2) is also the basic equation describing oscillations in a superfluid film when

(s) = —a— Normalized solutions are pivotal in modeling and understanding complex

(a+s)3 "’
behaviors in various physical systems, such as optical fibers and quantum fluids, where
nonlinear interactions are key. They offer critical insights into the dynamic stability and wave
propagation characteristics in these systems, making them indispensable in both theoretical
physics and practical applications but little is known about the existence (or non-existence) of

normalized solutions compared with the problem where A is prescribed.

For the first time, mass super-critical case was considered in [5], since the energy functional is
unbounded below on:
Se={u€eH'[RY), I ul3=c},
Subject to S, and f(s) is a nonlinearity satisfy the following global condition.
(H1) f: R =R is continuous and odd.
(H2)3a(a, B) € R X R satisfying

2N

2+i<asﬁ< ,
N N-2

Such that,
aF(s) < f(s)s < BF(s),
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With F(s) = [ f(t)dt.
(H3) F:R - R,F = f(s)s — 2F(s) such that:

2N+4

F'(s)s > "

F(s).

Jeanjean's approach, using a minimax argument and smart compactness argument, proved
instrumental in obtaining normalized solutions for these types of equations.
Building on this foundation, Bartsch and de Valeriola [15] expanded the understanding of these
solutions' multiplicity, while Ikoma and Tanaka [16] provided alternative proofs using ideas
related to symmetric mountain pass theorems. Later on [17] L. Jeanjen with Sheng-Sen Lu has
revisted [5] and they were able to study the problem with less strict conditions on the
nonlinearity.
More recently, research has ventured into more general nonlinearities, as explored in studies
[18].
All this work is done on the semi-linear problem but for the quasilinear problem, Due to the
quasilinearity the variational formulation is not smooth in general. The difficulties also arise
for similar problems without constraints. Similar problems without constrains have been
studied extensively in the last two decades (e.g. [23-27] and references therein) for which one
has the following quasi-linear elliptic equation with u being a fixed negative constant:

—Au — A(u|®)u — pu = |ulP~%u, in RV, (1.3)

With the corresponding energy functional:
_ 1 U
_ 2 2,2 _ P20,
J(uw) = ZL{N |Vu| dx+j;w |Vul*u? - = Ju|dx J;RN f(w) dx, (1.4)

Here, f(u) = [u(x)|?~%u. To overcome the non-differentiability of energy functional, dual
approach was used and then minimax principle to obtain the existence of normalized solution.
An important contribution in this area was made by an author [19], who considered (1.3) with
a nonlinearity of the form f(u) = |u(x)|P~2u and used a perturbation method to obtain a
ground state and an infinite number of normalized solutions. Tang and Yu's research [31]
revisits the Berestycki-Lions conditions on ground state solutions for a nonlinear Schrédinger
equation with variable potentials. Their innovative approach, leveraging the Jeanjean-Toland
monotonicity trick and the 1P inequality, provides a fresh perspective on obtaining nontrivial
critical points and least energy solutions, even when faced with non-sign definite functions.
One of the pivotal studies by Wei and Wu [28] addresses normalized solutions for Schrodinger
equations with critical Sobolev exponent and mixed nonlinearities. Their work provides crucial
insights into the compactness of minimizing sequences, leveraging the Aubin-Talenti
bubbles
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and ground state solutions to construct test functions, a strategy hinting at the profound
complexity of critical and supercritical perturbations. Quasilinear Schrodinger Equation with
saturable Nonlinearity is studied in [35].

In 2023, Chergui, Gou, and Hajaiej [29] delve into the existence and dynamics of normalized
solutions to nonlinear Schrodinger equations with mixed fractional Laplacians. Their work
highlights the varied landscape of normalized solutions, from global minimizers in mass
subcritical cases to saddle type critical points or local minimizers in mass critical or
supercritical scenarios. The study underscores the shift in methodology required when
transitioning from subcritical to critical or supercritical cases, marking a departure from global
minimization problems to more complex minimax arguments. In the same year, A study
presented in [30] on normalized solutions to Schrddinger equations with potential and
inhomogeneous nonlinearities in large convex domains explores the existence and multiplicity
of normalized solutions, adapting robust methods that can be applied to a range of other elliptic
partial differential equations with potentials. This work, while focusing on a specific setting,
broadens the application horizon for techniques used in analyzing normalized solutions.
Authors in [1] studied existence and nonexistence of nonzero solution of the following
equation:

—Mu + V(u + Au(x) + S [A@D]u = f(u), x €RY,

with V (x) as continuous potential by applying the dual approach and pohozaev identity with
superlinear or asymptotically linear terms. This Equation is also considered in [32] with critical
or supercritical exponents to study the existence of nontrivial solution. Here the author consider
the continuous potential. More recently, L. Jeanjean, J. Zhang and X. Zhong [33] considered:

—Au + Au = a(u), N
fn lufdx=c, —+*ER (L5)

and introduced a new approach to deal with problem (1.5) in the mass-subcritical, mass critical
and mass-supercritical case in one unified way. In particular, the assumption (H1), (H2) and
(H3) of [5] can be replaced by less strict assumptions:

(A)a € C0,+»),a(0) = 0and a(s) > 0 for s > 0.

(A,) There exist a, 8, uy, 1, > 0 satisfying:

2 < < 2% = 2N
a, B =N
such that,
y a'(t) y a'(t)
A, pemz = t(@ =1 >0 and lim 5 =4 (F = 1) > 0.
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(A3) There is no positive, radially decreasing classical solutions for —Au = a(u) in RY.

Motivated by [33] we will extend the results to Quasilinear Schrodinger Equation of form (1.1).
The examination of standing wave solution of the form:

z(t,x) = e"Mu(x),
we observe that z(t, x) satisfy Eq.(1.2) iff the function u(x) solves (1.6) with f(u) = [(u?)u.

_ k 21y — N
Au+ Au + > [Aw?)]u=f(u), xR (1.6)
And the natural energy functional associated to the equation is:

_ 1 1
J(w) = —f (1 — ku®)|Vu|?dx + —j Audx — J F(u)dx,
2 Jgw 2 Jgw R

N

Where F(u) = f:f(s)ds.

1.2. Assumptions and main results

Our approach, aligns with the contemporary discourse in nonlinear analysis, enabling us to
probe a broad spectrum of solutions under various nonlinearity conditions. More precisely, for
the nonlinearity f, we assume that

(F)f € C'[0,4),f(0) =0and f(s) > 0 fors > 0.

(F,) There exist a, 8, 14, tt, > 0 satisfying

2<af<2im—N
wh<zi=y—7
such that,

_f@®) _fl@®)

Am, ez =@ =1 >0 and lim S5 = ke (f~ 1D > 0.

(F;) This assertion articulates the non-existence of positive, radially decreasing classical

solutions for —Au + % [Aw?)]u = f(u) in RV,

REMARK 1.1. By [1] Theorem 2.2-(ii), (F;) holds for f(t) = |t|P~2t,p € (2,2N/(N — 2)).
Formally this can be related to the question of concerning critical points of a functional

J:Y(c) > R on the set Y = {u€ H"(RY) |[n|Vu|*u®dx < oo} having A as lagrange
multiplier given by

J(w) = %fRN (1 — ku?)|Vu|?dx — fRN F (u)dx.

To introduce our result, let us first define U as the unique positive solution of:

—AU +U = pu,U* 1 in RY,U(0) = maxU(x). (1.7)
xeRN
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and V the unique positive solution of:

—AV +V = pu,VE~1in RY,V(0) = maxV (x). (1.8)
x€RN

where U,V are non-degenerated (See [33](Proposition 2.1)).
THEOREM 1.2. For N > 3 and A4 > 0, we have the following conclusions.

(1) Mass Subcritical Case
For2<a,f <2+ %, there exists a positive normalized solution of (1.1) for any given positive

constant c. This solution is denoted as (1,u;) € (0, +%) x H: 4 (RY).

(i) Exactly Mass Critical Case
Ifa=p£=2 +%, denote:

N N

: 2 1 2 * 2 1 2
co=mind U IS\ =] IV I, ci=maxqIUIG| [z] VI,

A positive normalized solution (1,uy) € (0,+) x HL, (RV) to (1.1) is attainable if c is
within the interval (c,, ¢*) and no positive normalized solution if ¢ > 0 small or large.

(iii) At Most Mass Critical Case

This case has two sub-cases.

(k) f2<a<p=2+ %, a positive normalized solution (4, u;) € (0, +) x HL, (RV) to

N
(1.1) exists for 0 < ¢ < (\/%) Il V 113 and no positive normalized solution if ¢ > 0 large.

(iii-2)If2<B<a=2+ %, a positive normalized solution (4, u;) € (0, +) x H, (R) to
(1.1) exists if ¢ >l U lI3 and no positive normalized solution if ¢ > 0 small.

(iv) Mixed Case

This is also divided into two sub-cases.

(iv-1) For 2 <a <2 +% < B < 2%, there are at least two distinct positive normalized
solutions (ﬂi;uai) € (0,+%) x HX, (RM) to (1.1) for small values of ¢ > 0 and no positive
normalized solution for large values of ¢ > 0.

(iv-2) For 2 < g <2+ % < a < 2%, similar outcomes are observed for (1.1) but for large
values of ¢ > 0 and no positive normalized solution for small values of ¢ > 0.

(v) At Least Mass Critical Case

Here, we have,

(v-1) When 2+ % =a < B < 2% a positive normalized solution (4,u;) € (0,+) X
H.q (RY) to (1.1) exists if 0 < ¢ <l U 112 and no positive normalized solution for large values
of c > 0.
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(v-2) When 2 + % =B < a < 2*, asolution (1,u,) € (0,+) x HL, (RY) exists for (1.1) if

N
c> (\/%) Il V 115 and no positive normalized solution for small values of c.
(vi) Mass Supercritical Case
For 2 +% < a,B < 2*, there is a normalized positive solution (1, u;) € (0,+) x HL, (RN)

for (1.1) for any positive value of c.

Moreover, the positive solution u, satisfies the condition that for some k; > 0, the solution is
1

bounded within k € (0, k,) and max |u, (x)| < :
xeRN 3k

1.3. Strategy of this study

Initially, the study employs a dual approach, as referenced in [39,32,2] to convert the given
equation (1.1) into a semilinear elliptic equation. For any fixed positive A, it is demonstrated
that this equation admits at least one positive and radially symmetric solution, denoted as v;.

Drawing on methodologies similar to those in [33], the study uses a blow-up argument
combined with a Liouville theorem to analyze the asymptotic behaviors of the positive
solutions as A - 0*or 1 - +o0.The L2-norms of G~1(v,) are also scrutinized. Then, we aim
to establish a continuous branch of positive solutions for all positive values of A. Finally, by

applying a continuity argument, the study concludes with the proof of Theorem 1.2.

2. Functional setting and preliminaries

The natural energy functional J related to the equation (3.1) defined by J:Y(c) = R.
J@W) =~ fon (1= 1ud)|Vuldx — [ Fdx, 2.1)

However, a significant challenge in applying the variational method to study (1.1) arises due
to the functional J not being well-defined in general. This issue stems from the integral
fRN ku?|Vu|?dx not being finite. Additionally, there's a need to ensure the positiveness of the
term 1 — kt?.

To address these challenges and prove the main result, the study proposes an approach that
involves establishing normalized solutions for a modified quasilinear Schrédinger equation, as
described by (2.2):

—div(g*(@)Vu) + g(wg'W)|Vul® +u = f(w), x € RY (2.2)

Subject to the constraint fRN |lul?dx = ¢, with g(t) = V1 — kt? for |t| < /1/(3k) and k >
0. Clearly, when the function g(t) = V1 — kt2, equation (2.2) turns into (1.6).



Zhouxin Li, Ayesha Baig, Adv. Theory Nonlinear Anal. Appl. 8 (2024), 37-72. 44

Let us consider the function g: [0,4+c0) — R given by,

1
|\/1—Kt2 fo<t< /—

k3\/ﬁt f lf\[i

REMARK 2.1. Setting g(t) = g(—t) forall t < 0, it follows that g € C*(R, (;/1/6,1]),9 is
an even function, increases in (—oo, 0) and decreases in [0, +0).

g(®) =

Indeed, (2.2) represents the Euler-Lagrange equation corresponding to the natural energy
functional:

e =5

RN

2 2 1
g°-W)|Vul|“dx + E,fRN Adx — j y F(u(x))dx. 2.3)

R

But due to the presence of g in J,.(u) some additional difficulties arise. In what follows, let us
define G(t) = [, g(s)ds.

We observe that the inverse function G~1(t) not only exists but is also an odd function.
Additionally, both G and its inverse G~'are continuous and have continuous second
derivatives, as denoted by their inclusion in the class C?(R).

LEMMA 2.2. The functions g and G~ are characterized by following attributes:

(go)g € C? (]R, (\E 1]) is even, and g(0) = 1.

(g1) [lim g(t) = \E
(glim; e tg' () = 0.

“1(t
(g3) lim,_, t() 1.

-1
(94) lirnt—)oo ¢ t(t) = \/g
(gs)t < G‘l(t) <+6t, forall t > 0.
(g6) — = (t)g "(t) < 0, forall t > 0.

1 G1(t)
(g7) g(G_l(U)) <

forallt > 0.

Proof
(g,) follows from Remark 2.1.

(g1) Let us define the function g(t) piecewise, so we'll consider each part separately:
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1. ForOSt<\/g,g(t)=\/1—Kt2.

1 1 1
2.For\/;St,g(t)— 3mt+\/;'

So we only need to consider the the second piece for the limit t — co.

= ——+ |7
AN P [

Ast — oo, the term S%/Z_Kt approaches 0, since the denominator grows without bound. Therefore,

the limit of g(t) as t —» oo is dominated by the constant term \E

] 1
L{Lrg g(t) = 3 > 0.
(g3) We are interested in the derivative of the second part, since the limit is as t — co.

g'(t)=—

3v2kt?
. PN 1 1 N SN
And fim te'(0) = Jim 10~ 3e)= m(~ 5e) = 0

Proof of (g,) — (g¢) can be found in [39] (Lemma 3.1) and (g,) can be found in [32] (Lemma
2.1(6))
Now, setting v = G(u) = fou g(s)ds.

By J,. (1) we obtain the functional:

I.(v) = %fRN |Vv|?dx + %-I-]RN AGT(w)|?dx — fRN F(G‘l(v))dx, (2.4)

As it is well-defined, due to Lemma 2.2 and the assumptions on the nonlinearity F(s), of class
C! and being an even functional on H'(RM) then the variational functional (2.4) can be
transformed into:

- 1

— _ 2 _ -1

() =3 fRN |Vv|2dx fRN F(G*(v))dx. (2.5)

The constraint now becomes:
S(a) ={v e H*(RM), I G7*(v) 5= c}.

And,

G'(v) f(6'w) ld
' (2.6)

9 @) ?  glcw)?

If v is identified as a critical point of the functional I, then the function u = G~ (v)

I[L(v)p = f leVgo + A
RN

is established as a classical solution to (2.2), as detailed by Alves, Wang, and Shen[39].
Consequently, to locate solutions to equation (2.2), it is effective to focus on determining the

existence of solutions to the subsequent equation.
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')  f(67'(v)

—Av + Ag(G‘l(v)) = g(G‘1(v))’ x € RN @2.7)

with the prescribed mass [y 1G7*(v)]? dx = c.

And corresponding energy functional as defined in (2.5).
REMARK 2.3. Confirming the presence of a non-trivial solution v for equation (2.7) implies

that u = G~1(v) serves as a non-trivial solution to(1.1). This conclusion holds true provided

1/2_ o i i
the condition sup|u| < (i) is satisfied, as mentioned in [43].
RN 3k

The energy functional associated with problem (2.7), which corresponds to the energy
functional J, is defined as follows:

L(v) = %jﬂw |Vv|? dx — fRN F(G™'(v))dx.

Given that g is a nondecreasing and positive function, and I, is confirmed to be well-defined
in the HY(RN) and falls under the C*-class. Consequently, to discover normalized solutions
for equation (1.1), it's adequate to focus on the search for normalized solutions to problem
(2.7).

In our forthcoming analysis, we plan to adopt and modify some methodologies from [33] to
identify normalized solutions for problem (2.7).

Let,
(61 (v) 2 G (v)

GO RGO

hy(v) =

Then (2.7) turns into:
—Av+ v = hﬂ('l]), X € RN (28)

LEMMA 2.4. Under the assumptions (F,) — (F3) and (g,) — (g1), for any A > 0, there hold

that
() Forsome 1 <p < 2" —1,

lim sup -~ <

ha(s)
st SV
(ii) hy(s) = o(s),s = 0.

(iii) There exists T > 0 such that fOT hy(t)dT > %TZ.
ha(s) _ K2

(V) hy(s) < shy(s) for s > 0 small.

(iv) limg_, , o
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Proof. (i) For p = B — 1 by the assumption (F,) we can approximate f(u) for large u as
f@) = ppuf.

Substituting this into h;(s), we have:

w(E2 ) 6

) aere T

hy(s) =

Using (g4)and (g,), for s — oo:

- B-1
: () . 12(G71(s))
lim sup ~ lim sup <
s—+o0 S s—+o0 sP

-1
Since GT(S)approaches a constant as s — oo, and g(G~1(s))approaches a positive value \E

Hence the limit is finite.

(ii) Since,
f(G71()) G~1(s)
h = -1 As.
A (1) B RO )
Then,
(s f(GTN() _ G71(s)
s TGy M sgee) T
= lim@ =0
s—»0 S
(iii) Since,
. fot hl(T)dT . hﬂ(t)
lim —0 =1 ,
t—+oo t to+oo 2t

G e gy T

1[. f(G1(®) 11 G (1)
2

Take s = G~1(t), then we get,

t=G(s) = fsg(f)df-
And,
A lim ﬂzllim ;
t->+o0 tg(G=1(t)) soto G(s)g(s)

Noting that lim_, . g(s) = \E
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S
Alim ———=+6Alim ———
s—+00 G(S) ( ) s—>+00f g ’l')d‘[
= V6A lim ——
= g (5)’
= 6A.

Meanwhile, it follows from (F,) that,
im —f(G_l(t)) = lim &) =6 lim 1s)
=40 tg(GI(D) 540 G(S)g(s) | 540 G(s)’

—611m@ +o0

s—>+0 S

Thus we obtain that:
t
L m@dT

t—+o0 tZ

which implies that there exists T > 0 such that fOT h;(t)dT > %Tz.

(iv) Set p = B — 1 and notice that G(s) = s for any s > 0, we have:

_ As — 1(5)
Y h(s) Y f(GT1(s)) + lim g(G 1(S))
s—1>5-nw sp _sll:knwspg(G_l(S)) s—+00 sP

f@® . t

A Gorso R Gy’
—im 2D gy SO
Hmm@mm>wm09pg
\/g 6

— lim f(t) (\/—)p+1 _ (\/—)p+1

(v) Since,

67 w) . 67w
g6 () ")
(t)

hy(v) = + Av.

From (g,) and (g5) we have g(0) =1, 11m =1for-0.

We can assume that G~1(s) = s.
this implies £(G~*(s)) =~ f(s) and g(G‘l(s)) ~ g(s) =1
hy(s) = f(s) — A(s) + A(s).

ha(s) = f(s), (2.9)

And, shy(s) = sf'(s), (2.10)
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From (F,),
') = py(a — Dt 2,
[ roae= [ wte-ve=ar
0 0
(e —Ds*!
f(s) —f(0) = B
Since f(0) =0,

f(s) = uys*t,
sf'(s) = py(a — Das*~*.

Since a > 2, from (2.9) and (2.10) we get,

f(s) < sf'(s).
Consequently,

hy(s) < sh)(s).
According to Lemma 2.4, for every fixed value of positive A, the function h; meets the
Berestycki-Lions conditions. Drawing from the results in [3](Theorem 1), it follows that for
any A > 0, (2.8) has a ground state solution within H(R"). This solution is both positive and
radially symmetric. We can represent this as:

S ={(4vy) € (0,4) x HL, (RV):v; > 0, (4, v;) solves
G l(v G (v

g(G-l((g)) - gEG-lgv;; =0 RN}'
REMARK 2.5. Following [4](Theorem 2), for any A > 0, any positive C? solution @ of

—Av+ A

problem (2.8) that approaches zero as |x| — o,, is radially symmetric around some point x, €
RN, This means #(x) can be expressed as ii,(|x — x,|), with % <0 for r = |x — x| >
0. For simplicity, we assume x, = 0. The elliptic estimate further implies that both @ and |Vii|
decrease exponentially at infinity. The function h,(t) is defined as h,(t) = h,(t) + h,(t),for
t = 0, where:

f(61®) R0
g(G‘l(t))'hZ(t) B Ag(G‘l(t)) +

Then by (F,), hy(t) = O(|t]*"') ast — 0 and by (g,) and (g3),

hy(t) = At.
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limh,(t) = Ali [t '®
m = m —_——
t—0 2 t—0 g(G_l(t))
. - G'®
= Alimt — Alim——— =
t—0 t—0 g(G—l(t))

=0.

It follows that h, (t) = O(|t|™{e~12}) as t — 0. Moreover,
hy(0) = g3 (GGG (@) —g(G @) + 61 (g (G ()] = 0,t = 0.

This leads to the conclusion that h, is a nondecreasing function for all t > 0. Regarding the
condition on hy, it is specified as follows: there exists some constant C > 0 and a number p >
1, such that:

|hy(t1) — hy(t2)] < Clt; — to/llogmin(ty, )17, ty,t; € [O,Qﬁa&%a(x)]-

To establish [4](Theorem 2), its application is limited to the proof of [4](Lemma 6.3). Given
that @ exhibits exponential decay, it can be verified that [4](Lemma 6.3) remains applicable in
our scenario, and consequently, 4](Theorem 2)is also valid.

PROPOSITION 2.6. For N > 3, with 1 < p < 2* — 1 and u > 0, there indeed exists a distinct
positive radial solution Ug € H*(RM) to:

—Au + u = ‘uup, u € Hl(]RN) (211)

Furthermore, when linearizing equation (2.11) at Ug, the transformation:
90— —bp+o — w(U) o
results in a null kernel within H}_, (R").
Proof.
The findings mentioned are derived from analogous results credited to [7], concerning the
unique positive solution U, in H*(RN) for the equation:

—Au + u = uP. (2.12)

1
It is noted that U, is a positive solution to (2.12) if and only if U, defined as Uzﬁ‘ = pt-rl, is

a positive solution of (2.11).

DEFINITION 2.7. (see [21](Definition 1)) Consider U as a nonempty open subset of a Banach
space L and let @ € C1(U, R). If u, is a critical point of @ at a certain level € R, it is classified
as being of mountain pass-type (mp-type) under the following condition:

For every open neighborhood W contained in U around u,, theset W n{u € L: @(u) < d}

is nonempty and lacks path-connectedness.
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3. Asymptotic behaviors of positive solutions

In this section, our focus is on examining the asymptotic characteristics of v; when A = 4,, =
0ford =2, = +oo.

Echoing the approach in [33], we present a corresponding result for the scenario where 1 =
Ap = 07T,

LEMMA 3.1. Let {v, };=; © S with A = 4, - 07, the subsequent assertions are valid.

) limsupllv,ll , < +oo.
n—+oo
) vl 2
(ii) lim inf —=—2— > 0.
n—-+oo n
(1ii)
I Ivnllg
msup —— < 400,
n—+oo n
(iv) Set
1 X
wy, (x): = 2%y, <—>, (3.1
Jn

Then w,, satisfies,

1
h/’ln<lﬁwn>
—Aw, +w,, = — in RV
pra
And,
wy, = Uin H*(RY) and C, ,(R"), (3.2)

Where U € C,,(R") and is the singular positive solution of equation (1.7).
Proof. The proof follows a method akin to that outlined in [33](Section 4.1)

LEMMA 3.2. Consider the sequence {v,}n—,within §, where 1 = A,, » +oo. Then, after

Proof. By regularity, for any fixed n,v,, € C*(R") and we may assume that v, (0) = [lv,ll ..

Given this, set:

P X
vn(x)-— Un(o)vn <\//1—n>

We have,
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1=19,00) < Aﬁn(O) + 7, (0),

pe n(O) 70, " (@)

_FEmO)  6(m0)
Anvn(o)g(G_l(vn(O))) v,(0)g (6‘1(vn(0)))

+1,

c(lG L, ()% + 167 (1, (0))1F1) 1
1,0, (0) (3.3)
G~ (v,(0))
12(0)9(67(1,(0)))’
Here we used the fact that for some ¢ > 0, |f(t)| < c([t]*~! + |t]F~1),t > 0.
Let G~1(v,,(0)) = b, then v,,(0) = G(b,) = [ Ob" g(t)dt. Proceeding with a contradiction-

based approach, let's assume that the sequence {b,} is bounded. Under this assumption, (3.3)

implies that,
c(bﬁf‘1 + bfl_l) b,
1< 1
AnG(by) G(by)g(by)
c(bﬁf‘z + bfl_z) b,
< 1 3.4
7 G g By (34

If b,, — 0, then v,,(0) — 0. Recall that v, satisfies:
G '(vy)  f(G(wn))

—Av, + Ay, S~ g in RN . (3.5)
From (F,), it follows that:
—Av, + Gn = D@0 _ oo
9(67 ()
Multiplying both sides by v,, and then integrating over R¥, we obtain:
G vy
fRN Vv, > dx + (1, — 1) . ﬁ x <0, (3.6)

which is contradiction, due to G (v, (x))v, (x) > 0,x € R¥. Therefore, {b, } is positive and

remains bounded away from zero. As n — oo, in (3.21), we arrive at the following limit:

by
lim SUp ———m—————— S 0.
oY G(b)g(by)

This results in a contradiction. Consequently, it follows that, up to a subsequence, v,,(0) =

o,
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LEMMA 3.3. Let {v, };—; ©€ S with A = 4, » 400, then:
n.. nB-2
N 2%
lleBf 7, >0, (3.7)
Proof. Recall that,
G (v G (v
W i) B Ch IS
9(61(w) (6 (w)
Assuming, for simplicity, that v,,(0) = llv,ll , Vn € N, and given that —Av, (0) = 0,
f(G71(va(0))) G~ (v.(0))
— - — >0.
962w (0))) " g(6(wa (0)))
Since v, (0) = llv,ll
£(67(al,)) = 2,67 (lwall,,).
From (F,) which yields that:
R [
lim inf > 0.
n—-+co n
S0 (3.7) is proved.
LEMMA 3.4. Let {v,};-; € S with 1 = 4, - 400, then
v, 152
im sup +0, (3.8)
n—-+oo An

Proof. To establish this, we use a method of contradiction. Let's suppose that
N A
lim —2— = 400,

n-+oo n

Setk = %and

1 X
v,(x) =—v .
n(x) vl "(nvnn’;)

then 7, (0) = IV, Il , = 1 and

AV, (x) LA ( a )
—Av,(X) = —— — . — — .
" o 152 Nl IS

X

Let x" = ——. Then,

Vnlle

—Aﬁn(X) = —WAUTL(X’).
Nnlleo

And Un(x,) = ﬁn(x)llvn”ool
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A =L f(a—l(ﬁn(x)uvnnm))_l 61 (5.l )
n o (6 @m@Im,)) g (67w eIwlL)) |

vl
Here1+ 2k =4 —1,
1 (e m@iva,,))

—AD, =—33 v, I
0= 9 (67 T@lval,,))

3.9
G (B, ) lvnll, ) 49

(6 m@Iva,))|

According to condition (F,), the right-hand side of equation (3.9) is in L*(R"). Selecting an
appropriate subsequence, we can assume that v, — # in C2. (RV). Consequently,from F, and
g1, U becomes a non-negative bounded solution to:

A6 = 4, (V6) 1 in RY.
As a result of [33](Theorem 2.5-(ii)), it turns out that ¥ = 0, This, however, stands in
contradiction with the fact that 7(0) = 1.
LEMMA 3.5. Let {v, };—; € S with A = A, - +00. Define:

1
W () = 22 P, <i> (3.10)

Vi
Then, up to a subsequence, w, = V* in C,o(R") and H*(R") as n —» +o0, where V*(x) =
(\/% V(\/Ex) and V is identified as the unique positive solution to equation (1.8).
Proof. Referencing Lemma 3.3 and Lemma 3.4, it follows that:
0)F~2 v, (0)F 2

v,
0 < lim inf ——— < lim sup ———— < +oo.
n-+o An n-+oo An

This implies that {w,, } is uniformly bounded in L*(R"Y). Given that w,, satisfies:
—Aw,, +w,, = ——————2 in RY, (3.11)

That is,

1
14872 1
w7\ © (A" Wn)) 1 G </1§'2Wn>
—Aw, = AP~? ) — A . (3.12)
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From (F,), It can be verified that the right-hand side of (3.12) belongs to L®(RY). Due to
elliptic regularity, and selecting a suitable subsequence, we can assume that w, = V* in
CE.(RN). V* then fulfills the following

—AV* + 6V = 1, (VB) (VA1 in RY,V*(0) = maV* (x).
X€E
In a manner analogous to the approach used in [33], the desired result can be achieved.

Now, our attention shifts to exploring the asymptotic behavior of iiG‘l(vn)ii2 asn — oo,

THEOREM 3.6. (i) Let {v,}-; < HX(RN) be positive solutions to (2.7) with A = 1,, - 0*.

Then lim [lv,ll,, =0, lim Vv, = 0.
en  lim |Iv,ll,, =0, lim [Vw,ll, =0

And, 0 a<?2 +%
nl_l)rjlooIIG Wl = Ul a=2+_.
|+ a>2+7
N
(ii) Let {v,}~; < HY(RN) be positive solutions to (2.7) with 2 = A,, > +o0. Then,
nl—i>r-ipoo"vn"°° = +OO' nl—i>r-il:loo "anHZ = +oo.

4

And, +o0 <2+
. I b —-N/2 4
Jim 67wl = (V) VI, B=2+
4
ko L >2+ I
Proof.

Echoing the methods used in [33], it is possible to demonstrate the asymptotic behavior of

lvell,, and [IVv,ll,. For the subsequent discussion, the focus will be specifically on
1672wl
Q) Define w,, as per (3.1), and according to Lemma 3.1, it follows that,

161wl = f

1671 (v (0))1? dx,
RN
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2

- w (¥)
=/1n fRN 5 L dy,
- (7,) ) e
2
= L)
N, 2 ( " <\/Z
— /1n2 “‘ZJ w2 (y)dy,
RN v

-1
O
t

Since from (g3), we know that ltirr01

We have,
N 2

__+_
=21,2 2 U 15+ 0, (1)).

This leads to the attainment of the desired result.

(ii) For the case of 1 = 1,, » +o, let w,, be defined as in (3.10). Given that (g5),

LGt
Jim, = = lim, 7 = Ve,

by Lemma 3.5,

Gl v Y
N " <\//1_n> :
> y

16 Il = 1, f

|\ () /
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G -1 le L)
N, 2 <\//1—n

= 7 | Wiy,
R

Y

) )

Hence from (g5),

N 2
__+_
=22 P26IV*12 + 0, (1))

This leads to the achievement of the desired result.

4 Local uniqueness of positive solutions

In this section, we will establish the uniqueness of positive solutions for (2.7) under the
condition that A > 0 is either sufficiently small or large.

THEOREM 4.1. For N > 3 and under the assumptions that conditions (g,) — (g;)and(F;) —
(F,) are satisfied, (2.7) possesses at most one positive solution in cases where either 1 > 0 is
large and condition (g,) is also met, or A > 0 is small and condition (F;) is concurrently
fulfilled.

Proof.

To provide the proof, we will employ the approach detailed in [33].

If 1 > 0issmall and (F,) — (F3) are satisfied, let's assume that problem (2.7) has two distinct

families of positive solutions, wl(l) and wl(z) ,as A — 0*. Consider

. 1 .
v ()= ATe2w (V) i = 1,2

Then by Lemma 3.1, v, v/{z) € H},,(R") satisfy:
1
h, (Amv)

a-1
Aa-2

—Av+v= in RV,
and as 1 - O+,vf) — U bothin C, o(RY) and in H*(RY),i = 1,2. Setting:
17(1) _ 17(2)

A 2

[ =1,

$ai=

From mean value theorem for any x € R, exists some 8(x) € [0,1] such that:

1 1
h (2o iy (770?)
a—1 - a—1 :

Aa—2 Aa=2
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—AE & = A (aﬁ[a(x)vgﬂ () + (1= 0 (0] ) & in RY.

where for any t € R. We have:
RPN il sl O [ Cl Vel {CR OV KGR O)
A ALgG1 )P
9T ) -6 (g G
[g(G~1()]?

Since vf) - U in C,4(R"), one can see that:
1
)llirgl+/1ﬁ[9(x)vf) @) + (1= 8())vS? ()| = 0 uniformly for x € R,

+ 1.

From (F,) which implies that for any x € RV,
lim A7k (Aﬁ[e(x)vf)(x) +(1- e(x))vf)(x)]) = u, (@ — 1)U2,

Therefore, after selecting an appropriate subsequence, &, — & in C2.(RN). This ¢ is a radial
bounded solution to the following equation:
—A§+ &= (a— DY U2
Given that ||¢]l,, = 1,standard elliptic estimates indicate that & is a strong solution.
Considering the decay property of U and applying a comparison principle, it follows that
¢ decays exponentially to 0 as | x | - . Consequently, ¢ € C,o(R¥) n H},,; (RY).At this
juncture, Proposition 2.6 leads us to a contradiction.
Now focusing on the case where 1 > 0 is large and condition (g,) is satisfied: Let's assume
that problem (2.7) allows for two distinct families of positive solutions, w/l(l) and W)Ez) asd -
+o00. We proceed by considering:
v (): = A‘ﬁwj”(-/ﬁ), i=1,2
v/{l) _ UA(Z)

EA' = I .
1 @)
a2 — Y,

Similarly as above, there exists some 8(x) € [0,1] such that,

A +E =R (Aﬁ[e(x)vf) ) + (1 - 0(x)v® (x)]) £, in RV,

By Lemma 3.5, vf) -V in C.o(RY) as 2 - +oo for i = 1,2. It's easy to understand that for
any x € RV:

Al_i)r;noo/lﬁ—iz[e(x)vf) @ + (1 - 8@ ()] = +oo.

By (g,), for any x € RV,
lim g(G () -G ()g' (G (1)

LS FGIO)E =6

1
t=2F~2[0 (x)v§" (0)+(1-6 ()v (@)
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And,

lim f G )g¢ 1) - fFG'(@))g' (G (@)
A>+oo AMlg(G1()]3 tzaﬁ[e(x)vfll)(x)ﬂl—e(x))vf)(x)] .

= 1, (V6) VB2,

Therefore, by selecting a suitable subsequence, &; — € in C4.(RY) and ¢ is a radial bounded
solution of,

—AE + 6¢ = uy(V6) VB¢,
Similarly, this leads to a contradiction.

5. Existence of a curve of positive solution when 1 —» 0%

PROPOSITION 5.1. Let N > 3 and under the assumption that conditions (F;) and (F,) are
met, for any A > 0 there exists a positive radial solution v, € H'(RN) that solves equation
(2.7). Furthermore, like any solution to (2.7), this v, adheres to the Pohozaev identity.

N-2 N
S [Vv|2dx+=2 | |v|? dszj
2 2 o

Hy (v)dx. (5.1)
RN N

]RN
Where Hy (s) = [, ha(t)dt.

Moreover, defining the functional I;: H*(RN) - R . By,

1 1
L(v):= —f |Vv|? +—f Alv|? —J. H, (v)dx
2 ]RN 2 ]RN RN

We have,
L) =my:= Jé‘r§ trer%%h(y(t)), (5.2)
Where,
L= {y € C([0,1L, H*(RN) ):¥(0) = 0, L, (¥(1)) < 0} (5.3)
In particular,
1
m, = N"V”ﬂ”g' (5.4)
Proof.

In [8], for N = 3, the existence of a least action solution for equation (2.7) was proven under
broad assumptions that are fulfilled by Lemma 2.4, especially when the function h,(s) is odd.
Subsequently, in [20] extended this to N > 2 by providing a mountain pass characterization
for this least action solution. Let’s examine if these results are still applicable to our
nonlinearity h;(s),which is not odd. It's clear that the solution v, obtained by replacing
h,;(s) with i, (s) where
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h;(s) ifs>0

has) = {—hl(—s) ifs <0

IS non-negative, it also qualifies as a least action solution for the functional I (v). Notably,
since hy(s) = 0, it follows that,

HA(S) = fs Fl/l(t) dt = HA(S) , Vs eR
0

Hence, recalling from [20], for any positive least action solution, there exists a pathy €
I such that,

tren[gf]la(y(t)) =m.
y(®)(x) > 0 for all x € RN and t € (0,1]. From this, we can deduce that the mountain pass
characterization, as detailed in (5.2)-(5.3), remains applicable even if h;(s) is not odd. Lastly,
it's worth noting that (5.4) can be directly inferred by combining the findings from (5.1) and
(5.2).
Remembering the definition of a critical point of mountain pass-type as provided in Definition
2.7, it follows that,
LEMMA 5.2. Assume that (F1)-(F2) hold. Any solution w € H*(RN) to (3.12) which satisfies
I;(w) = my is of mp-type.
Proof.

Suppose that w € H*(RN) as a critical point of I; with I, (w) = my, it is necessary to
demonstrate that for any open neighborhood W c H*(RY) of w, the set

Wo =W n{veHR"):1,() <m,}.
is both nonempty and not path-connected.
Since W is open set, it includes a ball B(w, 4r) where:
B(w,4r) = {v € H'RY): Il v — w ()< 47}.
Applying [40](Lemma 4.1) with § = 2r and an arbitrarily fixed M > 0, we can infer the
existence of a constant T > 0 and a continuous path y: [0,T] = H*(R") that fulfills,
(i) ¥(0) = 0, L,((T)) < —1, maxeeqor LY (1) = I (w);
(i) y(tr) = w for some 7 € (0,T), and
Ly (@) < (w),

Forany t € [0,T] such that || y(t) — w g2 (mvy= 27

It is important to note that, after a reparametrization, we can assume T > 0 to be 1. We
fix T, < T < 1, such that,

(T2 = 0l s vy = 1y (T2) = 2 vy = 3.
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The points y(t,) and y(z,) belong to W, . and cannot be connected within the set I, .
Indeed, suppose they could be linked by a path s:(z,7;) » W, with s(z;) = y(r;) and
(1) = y(7,). Inthis case, by considering the path

y(t), forte[0,1,]
7(t) =4s(t), fort € [tq4,7,),
y(t), forte€ [, T]
we would have that y € T; with,
trer%g;s]h(?(t)) <my.
In contradiction with the definition of m;.
LEMMA 5.3. Assume that (F1)-(F3) hold. There exists some 4, > 0 small, such that for any
A € (0,1), (2.7) has a unique positive solution v; € H*(RN). Furthermore, the map A —
v, A € (0, 4,) is continuous. That is, {(4,v;): 1 € (0,4,)} isacurve in R x HL, (RV).
Proof.
By integrating the insights from Proposition 5.1 and Theorem 4.1, it becomes clear that there
exists a unique positive solution v; € H*(RN) for (2.7), specifically when A > 0 is sufficiently
small. This outcome is further supported under conditions (F1)-(F2) and Lemma 3.2 as
indicated in [22](Corollary 3.5), and also in reference to [42](Lemma 19). Given the
stipulations of Lemma 2.4, it is possible to identify some s* > 0 and a value of y > 2 such
that:
h;(s)s = yH;(s),Vs € [0,s*]. (5.5)
Furthermore, when condition (F3) is also in effect Lemma 3.1 provides us with the following
information:
lvall,, = 0as A — 07,

and therefore, we can determine a certain A, > 0 such that,

(%) < llwyll, < s%,Vx € RN, VA € (0, 4. (5.6)
For any A* € (0,1,), we aim to demonstrate the continuity of v, at A = A*. Specifically, this
means showing that for any sequence A,, —» A*, the corresponding solutions converge, i.e.,
v, = vy in HY (RN). without the loss of generality we may assume that,

A
?SﬂnSAO,VnEN

Noting that v, € H*(RN) satisfies,
2 2
f |V'U/'Ln| + Anf |'l7/1n| = f H)\ (vﬂn)vﬂndx. (57)
RN RN RN

we obtain, combining (5.7) with (5.1) and (5.4)-(5.6),
N = Dagllvz, I < (1 +12 = NIVos, [L < A+ 12 = Nly)Nmy,.
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Hence,

2
2

2 _ 2(1+|2-=N|y)N

a1 < =g =y ™0 and 1703,

o =len SNmAO.

By (gs),

12(1 412 = N|y)N
1] _1 II2 <
167l < — v D7

2
2

n n
my, and [[Vvy | = Nmy < Nm, .

Utilizing the fact that the function A — m, is non-decreasing, as supported by the
mountain pass characterization detailed in (5.2)-(5.3), we ascertain that the sequence {”An} IS
bounded in H*(RN). Moreover, the compact embedding of the radially symmetric subspace
HY, (RV) into LP (RN),2 < p < 2*combined with the governing equation for v, allows us to
demonstrate that {V/‘ln} is compact in H*(RN). Therefore, up to a subsequence, v, = v in
H*(RN), where v € HL, (RN) is a positive solution of (2.7) for A = A* The principle of
uniqueness then leads to the conclusion that v = v,-. This implies that the mapping A - v, is
continuous at A = A",

THEOREM 5.4. Assume that (F1)-(F2) and (g,) — (g-) hold. Forany A2 > 0, let v, denote the
unique solution of (2.7) in HX(R). Then the map A ~ v, is continuous from (0,+c0) to
HY(R). In particular {(4,v;): 1 € (0,+)} is connected.

Proof.

For any given A, > 0, we aim to establish the continuity of v;at A = A,. Specifically, this
means showing that for any sequence 4, — A,, the corresponding solutions v, — v, in
H*(RM). We propose that {v;,_} is bounded in H*(R").

The boundedness of {iin,ln ii;} follows straight forwardly from (5.4) and the fact that m — m;
is non-decreasing. To establish the boundedness of {iiG ‘1(v,1n)ii§} , let's define, for any fixed
n, afunction I(s) = —4,;s + h;(s). Recalling [8](Theorem 5), we find that,

maxv, (x) = v, (0) = s,
Where s, > 0 is the unique value for which L(s) <0 for s € (0,sy) and L(sy) = 0. Here

L(s):= [, L(t)dt.

Since v, (x) < so, x € R, we have that L(Uan (x)) < 0,x € R. Hence,

A 2
[ o )ax < o I (58)
R 2 2
Recalling that v, must satisfy the Pohozaev identity, i.e.,
Anf |va |” dx =f Hk(v,ln)dx+f Vv, | dx, (5.9)
RN RN RN

We deduce, combining (5.8) and (5.9), that,
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Since by (gs), we get,
12
n _1 II2 - n II2
16" (W)l = 1 VU2, l,-
Thus, {iiG‘l(vAn)iij} is also bounded. This means the sequence of solutions {v, } ¢ H*(RM)

is bounded. Keeping in mind that for each n € N, v, _ is a decreasing function, and employing
[41](Proposition 1.7.1), it is inferred that {v,} is compact in LP(R),V2 <p < .
Consequently, one can see that v, — v and G™'(v,,) = G~'(v) in H*(R"), after selecting a

suitable subsequence, where v € H},;(RN) is a positive solution of equation (2.7) for A = A,.
Similar to the argument presented in the proof of Lemma 5.3, the uniqueness of positive
solutions allows us to draw a definitive conclusion.

Since similar to [33] we only sketch it.

let,
S ={(A4,vy) € (0,4) x HL, (RV):, (A, v;) solves (2.7),v; > 0}.

Let's define § c S as the connected component of S that contains the solutions (4, v;,) for €
(0,49). We'll use P;: (0, +) x H!,,(RY) - (0,4) to denote the projection onto the A-
component. Our objective is to demonstrate that P, (S) = (0, +). For a fixed 1 > 0, let's
define the norm || v |l;, which is determined by,
1w I = (Il Vo 12+ 21 v 12

is equivalent to the usual norm || v ez (VY- The gradient of I, with respect to (-,-), can be
computed as,

VI,(v) =v— (A + ) h(v) =:v — T (v).
Classical degree theory arguments is utlized to analyze the equation.

T (v) = v, € (0,4+),v € HL, (RV).

From [33] we know that, the operator T: H., (RN) - H, (RN) is completely continuous and
v is the radial solution to (2.7) iff v is a fix point of T, in H., (RN).For 1 € (0,1,) from
lemma 2.4, part (v), we can get local fix point index

ind(T, v;) = degs(id — Ty, No(v;),0) = —1
where & > 0 is a small, N, represents the ¢ -neighborhood in ( H.4 (RN), and "deg" refers to
the Leray-Schauder degree. This definition is well-established and applicable when v, is an
isolated fixed point of T in H:, (RN).
Now, for any fixed 0 < a < b, define
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S(a,b) ={(},vy) € [a,b] X HL; (RN): v; > 0, (4,vy) solves
G (v) B f(G () . RN}
g(Gt(w)) g(Gt(v)) '

—Av+ 2

Applying a similar blow-up technique and an ordinary differential equation (ODE) approach,
it is easy to demonstrated that the set S(a, b) is compact in both C,o(RY) and H},,(RY).
Utilizing topological degree theory, and given the compactness of §(a, b) along with the fact
that the local fixed point index S(a, b) and ind(T,, v;) = —1 for 1 € (0,4,), it follows that
P,($) = (0,).This implies the projection of the connected component § onto the A-
component encompasses the entire positive real line.

6. Applications to existence, non-existence and multiplicity of Positive
Normalized Solutions
PROPOSITION 6.1. There exist a constant C; > 0 independent of k such that ||v; ]l < C;.
Proof.
Foreachm € N and B > 1, let 4,, = {x € RY:|1;|#~1 < m}and B,, = R \ 4,,. Define:
{mmw-l), in Ap,
Uy = 5 . .
mev,, n B,

Note that v,, € H*(R"), v,, < |v;|?#~* and

— 2(p-1) i
Vv, = (Zf Dina TV, in Ay, (6.1)
m-Vuv;,, mn B,
Using v, as a test function in (2.7), we deduce that,
G~ (1) l f(G (W)
vo,Vv,, + A—————v,, | dx = ———v,,dx, 6.2
-f]R{N I AT TGt w) ™ rv 9(GE () " (62)
By (6.2),
f Vv, Vv, dx = (28 — 1)f [, 2D Vv, |2dx + m? |Vv, |?dx, (6.3)
RN Am Bm
Let,
_ {U,1|U,1|B_1» in Ap,
Wy, = ) .
muv;y, in B,
Then w2 = vv,, < |v;|?#, and
_ (BlvalF 7'y, in A,
VW {va,l, inB,,
Hence,
f |Vw,, |2dx = ﬁZI |12~ DV, |2dx + m? | |Vv,|?dx. (6.4)
RN Am Bm
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Therefore, from (6.3) and (6.4),

(IVw,, |2 = Vv, Vu,,)dx = (B — 1)2f |va|2B~D| Vv, |2dx. (6.5)

RN Am

Combining (6.2), (6.3) and (6.5), since § > 1, we have,

—1)2
j [Vw, [2dx < ('28—_)+ 1]] Vv, Vv, dx,
RN p—1 RN

2 6T
<p fRN leAva + Ag(G‘l(vA)) vml d ,
f(G1(v)

——— v, . dx.
rv 9(G1 (1)) Pm@x

< p?

From (g,),

1 - G~ (vy) <
9(G1(vp) 2]

Considering f(s) = |s|?~2s, we get:

f |Vw,, |2dx S,Bzf (G‘l(vl))p_lvmdx.
RN RN

1.

By Sobolev inequality and (gs),

(N-2)/N
(f Iwmlz*dx> ssf |Vw,, |2dx.
A RN

m
< S,BZJ. |v2|P 2w dx.
RN

By Hélder inequality, we have,
1

(N-2)/N o
(f |wm|2*dx> < SB% vy IB2 <f |Wm|2p1dx>
A RN

m

Wherepi+1"2—_*2 = 1. Since |w,,| < |v4|f in RN and |w,,,| = |v,|? in 4,,, we have,
1
N-2 1

i N ~ o1
<f |[v,]#2 dx) < S Nlvy 52 (f |vﬂ|2ﬂp1dx>

m

By the Monotone Convergence Theorem, let m — oo, we have,

1 1
Il vy lgor< BBLS 11 vp 1D72128 1l vy N, (6.6)

Setting 0 = 2*/(2p,;) and B = o in (6.6), we obtain 2p, 8 = 2* and
1 1
1 v llgar< 0a{S Il vy IB72127 1 vy My, (6.7)

Taking f = o2 in (6.6), we have,
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1
I vy lly2p-< 002{5 Il vy 15723292 || vy [l gy (6.8)

From (6.7) and (6.8), we get:

1

1,2 p-2y2(0+1)
I V3 lg2p-< 00 2{S Il vy 115 °} 0702/ || vy 5.

Taking 8 = o,i = 1,2, ..., iterating (6.6) we get,

-2 Z
vy N,y < 072 {S Il vy 157212 R Il vy Ny,

Therefore, by Sobolev inequality and takmg the limit of j — 400, we get,
I v o< Cy

where C; > 0 is independent of k > 0. This ends the proof.

6.1. Proof of Theorem 1.2

Being similar to [33], Let us introduce the function
p:8 > RY, (4,v) - 67 W), (6.9)

() By Pi(8) = (0,+) and Theorem 3.6, if 2 < a < 2+ i, then there exists (1,,v,) € §
with 4,, - 0*and |G~ 1(Un)||2 — 0. Similarly, if 2<p <2 + =, there exists (A,,v,) c§

with A;, - +oco and iiG‘l(v,Q)ii2 — 400, Since $ is connected, for any given ¢ > 0, there exists

(A0, 1,) € S such that p(ii,) = c, that is, (2.7) possesses a positive normalized solution.
(ii) By
p(8) 2 p(S) o (c..c),
we see that for any ¢ € (c,.c*), (2.7) possesses at least one normalized solution (4,v;) with

A>0and 0 < v, € H:, (RN). Recalling Theorem 4.1, (2.7) has a unique solution v, > 0 for

A > 0 small or large enough. So for any § € <0, min{ll U3, (LN) (R% II§}>, there exists
(6)2

some A; > 0 small enough and A, > 0 large enough such that,
p(Lv) € U I5= 6,11 U 5+ 6), v € (0,A,)

N N

1 1
p(A,v) € \/; IV 1I5-6, \/; IV I5+8 ], VAE (Ay +)

On the other hand, by similar to [33]_(Corollary 3.2 and Lemma 3.3), For 0 < A; < A,, +o,

we define the set VA/;l := {v € H},,(RN): v is a non negative solution to (2.7) with 1 €

[A14,]}.
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We can find some M;, M, > 0 such that,
{1671 () 1B:v e v} < My, M)

Then for any ¢ € (0,c,) U (c*,4+), (2.7) has no positive normalized solution.
(iii-1) By

N

~ 1
p(8)>p(S) o]0, \/; Vi3 |
applying a similar argument as (ii), we can prove that (2.7) with constraint has at least one

N
normalized solution (A,v;) with A >0 and 0 <v; € H},,(R?) if 0 <c < <\E> IV 3.

And (2.7) do not possess any positive normalized solution provided ¢ > 0, large This finishes
the proof of (iii-1). The case of (iii-2) will be proved in a similar manner.

(iv-1) In such case, we have jjG~1(v;) iii — 0 bothas 1 - 0*and as A —» 4. Define
Ci= mgxp(l, v3).
Then, there exists some A* > 0 with iiG‘l(v/v)ii; = ¢,. Then for any c € (0, c,), there exist
some A, € (0,4%) and A, € (1%, +o0) such that,
p(Al, 77/11) = p(AZ, Uﬂz) =c.

This means that for any ¢ € (0,c,), problem (2.7) admits at least two distinct normalized
solutions (4;,v;) with 2; > 0 and 0 < v; € H:, (R?),i = 1, 2. Furthermore, by employing a
reasoning similar to that used in (ii), we can establish the existence of some M > c, such that
(2.7) lacks positive normalized solutions when ¢ > M.The case described in (iv-2) can be

proven through a comparable methodology. It’s important to note that in this case,

"6_1(77/1)"; — +oo bothas A — 0%and 1 — +oo.

(v-1) By
p(8) 2 p($) 2 (0,1 U 113),

we can prove it in a similar way to (iii-1). The case described in (v-2) can be proven in similar
way.

(vi) As in the proof of (i), we have that p(S) = (0, +o0), and the conclusion follows from
Theorem 3.6.

Combining the above arguments and by proposition 6.1, the solution v, of (2.7) satisfies

”vﬂ.”oo < Cl'

lualleo = 161 (WD leo < V6lIv3ll o0 < VEC,.
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Now we only need to show that v/6C; < \/:ik

1
18¢c2 "’

1 . 1
\/; holds. |luy |l will always b less than\/:—k .

luzlleo = V6C; < \/g forall k € (0,k,).

we ensure that for any k less that k,, the condition V6C,; <

Hence by defining k; as

Verifying: Suppose V6C; < \/g holds, squaring both sides we get 6CZ < i

1 o ) . 1 1
18c12'ThUS this inequality holds only if k < TocE let ke, = T8c?

This implies that k <

1
18¢c2’

k<k1=

This implies that u; = G~ (v,) is a positive solution of (3.1).

Impact of k on solution Bounds: Graphical Evidence

For C; = 1, this graph clearly demonstrates that for all values of k less than k;, the blue curve

/i remains above the red line v/6C;. This visual evidence confirms that the maximum value

of the solution u;, is indeed less than \/g for all k within this range, thereby validating the

conditions stipulated by the theorem.

Visualization of y/ 5 vs. k and Vec,

Value

0.01 0.02 0.63 0.04 0.05 0.66

Figure 1 Impact of k on Solution Bound
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