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Abstract. In this research work, we obtain Discrete Laplace Transform(DILAT)

of higher order cosine functions and using this DILAT results by employing Initial

Value Problems to get applications in the field of physical sciences. Also we present

several theorems and examples to illustrate our findings by using MATLAB.
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1. Introduction

The Laplace transform is a mathematical technique used to transform

functions from the time domain to the frequency domain. It is a widely used tool

in various fields, including mathematics, physics, engineering, and control systems.

The Laplace transform is named after Pierre-Simon Laplace, a French

mathematician and astronomer who introduced the transform in the late 18th

century. It provides a powerful method for solving differential equations and

analyzing linear time-invariant systems[7]. When applying the Laplace transform,

a function of time is converted into a function of a complex variable, usually

denoted as ”s”. The transformed function, known as the Laplace transform of the

original function, can provide valuable insights into the behavior of the system.

definedThe Laplace transform is as an integral, given
by:

Advances in the Theory of Nonlinear Analysis and its Applications 8 (2024) No. 1, 25-36.
https://doi.org/10.17762/atnaa.v8.i1.371
Available online at https://atnaea.org/
Research Article

Received March 25, 2024;     Accepted: April 08, 2024;     Online: July 25, 2024.



F (s) = L[f(t)] =
∞∫
0

e−stf(t)dt =
∞∑
0

e−stf(t), where F (s) represents the Laplace

transform of f(t), and s is a complex variable. The function f(t) is multiplied by

the exponential term e−st and integrated over the interval [0,∞]. By applying the

Laplace transform, various operations such as differentiation, integration, and

convolution can be simplified into algebraic operations in the frequency domain.

This makes it easier to solve differential equations, analyze system responses, and

study system stability and control. It is important to note that the Laplace

transform is a well-established mathematical concept and is widely taught and

used in academic and professional settings[11]. The Laplace transform allows us to

separate the transient and steady-state components of a solution to an IVP[12, 13].

By transforming the given initial conditions and differential equation, we can solve

for the Laplace transform of the solution. Inverse Laplace transforms the resulting

which expression yields the solutions in the time domain, revealing the transient

behavior (initial response) and the steady-state behavior (long-term response) of

the system. At recently, the authors [8, 9, 10], have been obtained and analysed

with many applications using Laplace transform with n−tuples.

The discrete Laplace transform is commonly used in digital signal

processing, control systems analysis, and communication systems. It allows us to

analyze the behavior of discrete systems and solve difference equations in the

frequency domain[12]. Given a discrete-time signal or sequence, denoted as x[n],

the discrete Laplace transform, denoted as X(z), is defined as:

X(z) = Z{x[n]} =
∞∑
0

x[n]z−n, where z is a complex variable. The sequence x[n] is

multiplied by the term z−n and summed over the range of n from 0 to infinity.

An initial value problem (IVP) is a type of differential equation problem

that involves finding a solution to a differential equation, given an initial condition

[4]. It typically consists of a differential equation and one or more initial conditions

that specify the values of the unknown function(s) at a particular point.

Mathematically, an initial value problem can be represented as follows:
dy

= f(x, y)y(x0) = y0. Here, dy/dx represents the derivative of the unknown
dx
function y with respect to x, f(x, y) is a given function that defines the

relationship between x, y and their derivatives, x0 is the initial value of x, and y0 is

the initial value of y at x0. The goal is to find a function y(x) that satisfies the

differential equation with also satisfies the initial condition y(x0) = y0. The

solution to the initial value problem is typically an expression for y(x) that
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depends on the given differential equation and initial conditions. There are various

methods to solve initial value problems depending on the type of differential

equation involved. Some common techniques include separation of variables,

integrating factors, variation of parameters, and numerical methods such as Euler’s

method or the Runge-Kutta method. Solving an initial value problem allows us to

understand how the unknown function evolves over the domain of interest, given

its initial behavior. These problems have applications in many fields, including

physics, engineering, economics, and biology, where the behavior of systems can be

modeled using differential equations. This research aims to propose a novel

approach to solving initial value problems using DILAT.

2. Preliminaries

In this section, we present some basic definitions and results.

Lemma 2.1. [4] For k ∈ [a, b] and if ` =
b− a
M

, then we have

∆−1` u(k)
∣∣a
b

=
M∑
r=1

u(b− r`) =
M−1∑
r=0

u(a+ r`).

In general, we express

∆−1` u(k)
∣∣j
k

=

[ k
`
]∑

r=1

u(k − r`) =

[ k
`
]−1∑
r=0

u(j + r`), k ∈ (`,∞), j = k − [
k

`
]`.

Definition 2.2. [5] Let u(k) and v(k) be a complex valued functions defined on

[a,b] and ` = b−a
M

. The discrete inner product of u and v with respect to ` is defined

as

(u, v)` = `∆−1` u(k)v∗(k)
∣∣b
a

= `

M−1∑
r=0

u(a+ r`)v∗(a+ r`)

and the norm of u related to ` is defined as

‖u‖(`) = (u, u)
1
2
` =

[
`
(
∆−1` |u(k)|2

) ∣∣b
a

] 1
2

=

[
`

M−1∑
r=0

∣∣u(a+ r`)2
∣∣] 1

2

Definition 2.3. [11] Let u(k), k ∈ [`,∞), be a real or complex valued function.

Then, the `-difference operator ∆` on u(k) is defined as ∆`u(k) = u(k + `) − u(k)

and its infinte `-difference sum is defined by ∆−1` u(k) =
∞∑
r=0

u(k + r`).
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Definition 2.4. [6] Let u(k) and v(k) are the two real valued functions defined on

(−∞,∞) and if ∆`v(k) = u(k), then the finite inverse principle law is given by

v(k)− v(k − β`) =

β∑
r=1

u(k − r`), β ∈ Z+.

Applying the definition 2.2.1, we get the modified identities as follows:

(i) ∆`k
(β)
` = (β`)k

(β−1)
` , (ii) ∆−1` k

(β)
` =

k
(β+1)
`

`(β+1)
, (iii) ∆−1` kβ =

β∑
r=1

Sβr `
β−rk

(r+1)
`

(r+1)`
.

Lemma 2.5. Let ` > 0 and u(k), v(k) are real valued bounded functions. Then

∆−1` (u(k)v(k)) = u(k)∆−1` v(k)−∆−1`
(
∆−1` v(k + `)∆`u(k)

)
.

Theorem 2.6. If a function f(x, y) is continuous in a region of the (x, y) plane,

then for any initial condition (x0, y0), there exists a unique solution to the initial

value problem
dy

dx
= f(x, y), y(x0) = y0 in some interval containing x0.

Lemma 2.7. If there exists a constant L such that |f(x, y1)− f(x, y2)| ≤ L|y1− y2|
for all (x, y1) and (x, y2) in a region, then the solution to the initial value problem

is unique in that region.

Theorem 2.8. If the function f(x, y) is continuous and satisfies a Lipschitz

condition with respect to y in a region, then there exists a unique solution to the

initial value problem d
dy

dx
= f(x, y), y(x0) = y0.

Definition 2.9. The discrete Laplace transform(DILAT) of a function f(x),

defined for all real numbers x ≥ 0, is the function F (s), defined by

F (s) = DILAT {f(x)} =
∞∑
0

e−sxf(x). (1)

3. Main Results

Theorem 3.1. If x ∈ R, then the discrete laplace transform of cosnx is

DILAT (cosnx) =
e2s − es cosn

e2s − 2es cosn+ 1
.

Proof. L(cosnx) =
∞∑
x=0

cosnx e−sx =
∞∑
x=0

enixe−sx =
∞∑
x=0

ex(ni−s)

= 1 + ein−s + e2(in−s) + ... = (1− e(in−s))−1 =
1

1− e(ni−s)
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=
1

1− ein.e−s
=

es

es − ein
=

es

es − cosn− i sinn

=
es

es − cosn− i sinn
× es − cosn+ i sinn

es − cosn+ i sinn

=
e2s − es cosn+ ies sinn

e2s − 2es cosn+ cos2 n+ sin2 n

L(cosnx) =
e2s − es cosn

e2s − 2es cosn+ (cos2 n+ sin2 n)

Which completes the proof of Theorem 3.1. �

Theorem 3.2. If x ∈ R, then the DILAT of sinnx is

L(sinnx) =
es sinn

e2s − 2es cosn+ 1
.

Proof. L(sinnx) =
∞∑
x=0

enix e−xs =
∞∑
x=0

ex(ni−s) = 1 + eni−s + e2(ni−s) + ...

= (1− e(ni−s))−1 =
1

1− e(ni−s)
=

es

es − eni
=

es

es − cosn− i sinn

=
e2s − es cosn+ ies sinn

e2s − 2es cosn+ cos2 n+ sin2 n
=

es sinn

e2s − 2es cosn+ (cos2 n+ sin2 n)

From this we get the proof of Theorem 3.2. �

Theorem 3.3. If x ∈ R, then the DILAT of cos2x is

L(cos2 x) =
1

2

[
es

es − 1
+

e2s − es cos 2

e2s − 2es cos 2 + 1

]
.

Proof. We know that L(cos2 x) = L

[
1

2
(1 + cos 2x)

]
=

1

2
[L[1] + L(cos 2x)]

By applying Theorem 3.1 we get the proof. �

Theorem 3.4. If x ∈ R, then the DILAT of cos3 x is

1

22

[
e2s − escos3

e2s − 2escos3 + 1
+ 3

(
e2s − escos1

e2s − 2escos1 + 1

)]
Proof. We have L(cos3 x) =

1

22
L [cos 3x+ 3 cosx] =

1

22
[L(cos 3x) + 3L(cos x)]

By applying Theorem (3.1) we get the proof. �
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Theorem 3.5. If x ∈ R, then the DILAT of cos4 x is

1

23

[
e2s − escos4

e2s − 2escos4 + 1
+ 4

(
e2s − escos2

e2s − 2escos2 + 1

)
+

3es

es − 1

]
.

Proof. Consider

L(cos4 x) =
1

23
L [cos 4x+ 4 cos 2x+ 3] =

1

23
[L(cos 4x) + 4L(cos 2x) + L(3)]

By applying Theorem (3.1) we get the proof. �

Theorem 3.6. If x ∈ R, then the DILAT of cos5 x is

1

24

[
e2s − escos5

e2s − 2escos5 + 1
+ 5

(
e2s − escos3

e2s − 2escos3 + 1

)
+10

(
e2s − escos1

e2s − 2escos1 + 1

)]
.

Proof. From the trigonometric expansion of cos5 x and Theorem (3.1) we get the

proof. �

Theorem 3.7. If x ∈ R, then the DILAT of cos6 x is

1

25

[
e2s − escos6

e2s − 2escos6 + 1
+ 6

(
e2s − escos4

e2s − 2escos4 + 1

)
+15

(
e2s − escos2

e2s − 2escos2 + 1

)
+

10es

es − 1

]
.

Proof. We get the proof by applying the expansion of cos6 x and Theorem (3.1). �

Theorem 3.8. If x ∈ R, then the DILAT of cosn x is

(i) If n is odd, then

L(cosnx) =
1

2n−1

[n
2
]∑

r=0

ncr
e2s − escos(n− 2r)

e2s − 2escos(n− 2r) + 1
(2)

(ii) If n is even, then

L(cosnx) =
1

2n−1

[n−1
2

]∑
r=0

ncr
e2s − escos(n− 2r)

e2s − 2escos(n− 2r) + 1
+

1

2n
(ncn

2
) (3)

Proof. The proof of equation (2) obtain by using Theorem3.4 and Theorem 3.6 and

proof of the equation (3) obtain by using Theorem 3.3, 3.5 and 3.7 for the induction

on n. �

Example 3.9. Taking n = 15 in equation (2), we get DILAT of cos15 x is

L(cos15 x) =
1

214

[
e2s − es cos 15

e2s − 2es cos 15 + 1

(
e2s − es cos 13

e2s − 2es cos 13 + 1

)
+ 15
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+105

(
e2s − es cos 11

e2s − 2es cos 11 + 1

)
+ 455

(
e2s − es cos 9

e2s − 2es cos 9 + 1

)

+1365

(
e2s − es cos 7

e2s − 2es cos 7 + 1

)
+ 3003

(
e2s − es cos 5

e2s − 2es cos 5 + 1

)

+5005

(
e2s − es cos 3

e2s − 2es cos 3 + 1

)
+ 6435

(
e2s − es cos 1

e2s − 2es cos 1 + 1

)]
.

Example 3.10. Taking n = 18 in equation (3), we get DILAT of cos18 x is

L(cos18 x) =
1

217

[
e2s − es cos 18

e2s − 2es cos 18 + 1
+ 18

(
e2s − es cos 16

e2s − 2es cos 16 + 1

)

+153

(
e2s − es cos 14

e2s − 2es cos 14 + 1

)
+ 816

(
e2s − es cos 12

e2s − 2es cos 12 + 1

)

+3060

(
e2s − es cos 10

e2s − 2es cos 10 + 1

)
+ 8568

(
e2s − es cos 8

e2s − 2es cos 8 + 1

)

+18564

(
e2s − es cos 6

e2s − 2es cos 6 + 1

)
+ 31824

(
e2s − es cos 4

e2s − 2es cos 4 + 1

)

+43758

(
e2s − es cos 2

e2s − 2es cos 2 + 1

)
+ 24310

]
.

4. IVP of cosn x using DILAT

An Initial value problem (IVP)is an ordinary differential equation

together with an initial condition which specifies the value of the unknown

function at a given point in the domain. Modeling a system in physics or other

sciences frequently amounts to solving an initial value problem. In this section we

obtain solution of IVP By using DILAT.

Theorem 4.1. The Discrete IVP ∆an = cos x, a0 = 1 has a solution given by

an = 1 + cos1.

Proof. Let cos x = ∆an ⇔ (es − 1)l(an)− a0 = l(∆an)

⇔ (es − 1)l(an)− 1 = l(cosx)⇔ l(an) = 1 +
e2s − es cos 1

(es − 1)(e2s − 2es cos 1 + 1)

B. Govindan, T. Sathinathan, S. J. Borg, Sandra Pinelas, M. Meganathan,
Adv. Theory Nonlinear Anal. Appl. 8 (2024), 25–36. 31



an = 1 + l−1
(

e2s − es cos 1

(es − 1)(e2s − 2es cos 1 + 1)

)

an = 1 + l−1
(

1

es − 1

)
l−1
(

e2s − es cos 1

(e2s − 2es cos 1 + 1)

)
= 1 + cos 1 �

Theorem 4.2. The Discrete IVP ∆an = cos2 x, a0 = 1 has a solution given by

an = 1 +
1

2
(cos 2 + 1).

Proof. We have cos2 x = ∆an ⇔ (es − 1)l(an)− a0 = l(∆an)

(es−1)l(an)−1 = l(cos2 x)⇔ l(an) = 1+
1

2

[
e2s − es cos 2

(es − 1)(e2s − 2es cos 2 + 1)
+

1

es − 1

]

an = 1 +
1

2

[
l−1
(

e2s − es cos 2

(es − 1)(e2s − 2es cos 2 + 1)

)
+ l−1

(
1

es − 1

)]

an = 1 +
1

2

[
l−1
(

1

es − 1

)
l−1
(

e2s − es cos 2

(e2s − 2es cos 2 + 1)

)
+ l−1

(
1

es − 1

)]
an = 1 +

1

2
(cos 2 + 1) �

Theorem 4.3. The Discrete IVP ∆an = cos3 x, a0 = 1 has a solution given by

an = 1 +
1

22
(cos3 + 3cos1).

Proof. Let cos3 x = ∆an ⇔ (es − 1)l(an)− a0 = l(∆an)

(es − 1)l(an)− 1 = l(cos3 x)

⇔ (es − 1)l(an)− 1 =
1

22

[
e2s − es cos 3

e2s − 2es cos 3 + 1
+ 3

(
e2s − es cos 1

es − 2es cos 1 + 1

)]

l(an) = 1 +
1

22

[
e2s − es cos 3

(es − 1)(e2s − 2es cos 3 + 1)
+ 3

(
e2s − es cos 1

(es − 1)(es − 2es cos 1 + 1)

)]
an = 1 +

1

22

[
l−1
(

e2s − es cos 3

(es − 1)(e2s − 2es cos 3 + 1)

)
+3l−1

(
e2s − es cos 1

(es − 1)(es − 2es cos 1 + 1)

)]

an = 1 +
1

22
(cos 3 + 3 cos 1) �

Theorem 4.4. The Discrete IVP ∆an = cos4 x, a0 = 1 has a solution given by

an = 1 +
1

23
(cos4 + 4(cos2) + 3).

Proof. We have cos4 x = ∆an ⇔ (es − 1)l(an)− a0 = l(∆an)
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⇔ (es − 1)l(an)− 1 = l(cos4 x)

⇔ (es − 1)l(an)− 1 =
1

23

[
e2s − es cos 4

e2s − 2es cos 4 + 1
+ 4

(
e2s − es cos 2

e2s − 2es cos 2 + 1

)
+ 3

]

⇔ (es − 1)l(an) = 1 +
1

23

[
e2s − es cos 4

e2s − 2es cos 4 + 1
+ 4

(
e2s − es cos 2

e2s − 2es cos 2 + 1

)
+ 3

]

⇔ l(an) = 1 +
1

23

[
e2s − es cos 4

(es − 1)(e2s − 2es cos 4 + 1)

+4

(
e2s − es cos 2

(es − 1)(e2s − 2es cos 2 + 1)

)
+

3

es − 1

]
an = 1 +

1

23
(cos 4 + 4(cos 2) + 3) �

Theorem 4.5. The Discrete IVP ∆an = cos5 x, a0 = 1 has a solution given by

an = 1 +
1

24
(cos5 + 5(cos3) + 10(cos1)).

Proof. We have cos5 x = ∆an ⇔ (es − 1)l(an)− a0 = l(∆an)

⇔ (es − 1)l(an)− 1 = l(cos5 x)

⇔ l(an) = 1 +
1

24

[
e2s − es cos 5

(es − 1)(e2s − 2es cos 5 + 1)
+ 5

(
e2s − es cos 3

(es − 1)(e2s − 2es cos 3 + 1)

)

⇔ an = 1 +
1

24

[
l−1
(

1

es − 1

)
l−1
(

e2s − es cos 5

(e2s − 2es cos 5 + 1)

)

+5l−1
(

1

es − 1

)
l−1
(

e2s − es cos 3

(e2s − 2es cos 3 + 1)

)

+10l−1
(

1

es − 1

)
l−1
(

e2s − es cos 1

(e2s − 2es cos 1 + 1)

)]
an = 1 +

1

24
(cos 5 + 5(cos 3) + 10(cos 1)) �

Theorem 4.6. The Discrete IVP ∆an = cos6 x, a0 = 1 has a solution given by

an = 1 +
1

25
(cos6 + 6(cos4) + 15(cos2) + 10).

Proof. We have cos6 x = ∆an ⇔ (es − 1)l(an)− a0 = l(∆an)

⇔ (es − 1)l(an)− 1 = l(cos6 x)
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⇔ l(an) = 1 +
1

25

[
e2s − escos6

(es − 1)(e2s − 2escos6 + 1)
+ 6

(
e2s − escos4

(es − 1)(e2s − 2escos4 + 1)

)

+15

(
e2s − escos2

(es − 1)(e2s − 2escos2 + 1)

)
+

10

es − 1

]

⇔ an = 1 +
1

25

[
l−1
(

1

eS − 1

)
l−1
(

e2s − escos6
(e2s − 2escos6 + 1)

)

+6l−1
(

1

eS − 1

)
l−1
(

e2s − escos4
(e2s − 2escos4 + 1)

)

+15l−1
(

1

eS − 1

)
l−1
(

e2s − escos2
(e2s − 2escos2 + 1)

)
+ l−1

(
10

es − 1

)]
⇔ an = 1 +

1

25
(cos6 + 6(cos4) + 15(cos2) + 10) �

Theorem 4.7. The Discrete IVP ∆an = coskx, a0 = 1 has a solution given by

an = 1 +
1

2n−1

[n
2
]∑

r=0

ncrcos(n− 2r) n is odd

an = 1 +
1

2n−1

[n−1
2

]∑
r=0

ncrcos(n− 2r) +
1

2n
(ncn

2
) n is even

Proof. We shall prove this theorem by induction on k as two kind in odd and even

cases.

For the odd particular values k = 1, 3, 5 we have the results in the Theorem

(4.1),(4.3),(4.5) and for the even particular values k = 2, 4, 6 the results of Theorem

(4.2),(4.4),(4.6) which we have proceeding like this induction on k, we get the proof.

�

The following figures represents the numerical illustration of the cosine functions

of power 1,2 and 3 and also the solution of initial value problems are presented for

better understanding of our findings.
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Figure 1. Input

function cos x

Figure 2. IVP solution

of cos x

Figure 3. Input

function cos2 x

Figure 4. IVP solution

of cos2 x

Figure 5. Input

function cos3 x

Figure 6. IVP solution

of cos3 x
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5. Conclusion

In this research work, the Discrete Laplace transform(DILAT) is successfully

defined and analyzed with the help of difference operator. We have successfully

derived formulas and results for the higher order cosine functions by applying

initial value problems to obtain applications. Finally we conclude that this

investigation describes the solutions of each initial value problems for our findings

by using MATLAB in a graphical manner.
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