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ABSTRACT. In this research work, we obtain Discrete Laplace Transform(DILAT)
of higher order cosine functions and using this DILAT results by employing Initial
Value Problems to get applications in the field of physical sciences. Also we present
several theorems and examples to illustrate our findings by using MATLAB.
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1. INTRODUCTION

The Laplace transform is a mathematical technique used to transform
functions from the time domain to the frequency domain. It is a widely used tool
in various fields, including mathematics, physics, engineering, and control systems.
The Laplace transform is named after Pierre-Simon Laplace, a French
mathematician and astronomer who introduced the transform in the late 18"
century. It provides a powerful method for solving differential equations and
analyzing linear time-invariant systems[7]. When applying the Laplace transform,
a function of time is converted into a function of a complex variable, usually
denoted as ”s”. The transformed function, known as the Laplace transform of the
original function, can provide valuable insights into the behavior of the system.

The Laplace transform is defined as an  integral, given
by:
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F(s) = L[f(t)] = Te_“f(t)dt = ie‘“f(t), where F(s) represents the Laplace
0 0

transform of f(¢), and s is a complex variable. The function f(t) is multiplied by

)

the exponential term e™* and integrated over the interval [0, 00]. By applying the
Laplace transform, various operations such as differentiation, integration, and
convolution can be simplified into algebraic operations in the frequency domain.
This makes it easier to solve differential equations, analyze system responses, and
study system stability and control. It is important to note that the Laplace
transform is a well-established mathematical concept and is widely taught and
used in academic and professional settings[I1]. The Laplace transform allows us to
separate the transient and steady-state components of a solution to an IVP[12] [13].
By transforming the given initial conditions and differential equation, we can solve
for the Laplace transform of the solution. Inverse Laplace transforms the resulting
which expression yields the solutions in the time domain, revealing the transient
behavior (initial response) and the steady-state behavior (long-term response) of
the system. At recently, the authors [8, O, [10], have been obtained and analysed
with many applications using Laplace transform with n—tuples.

The discrete Laplace transform is commonly used in digital signal
processing, control systems analysis, and communication systems. It allows us to
analyze the behavior of discrete systems and solve difference equations in the
frequency domain[12]. Given a discrete-time signal or sequence, denoted as x[n],

the discrete Laplace transform, denoted as X(z), is defined as:

X(z) = Z{z[n]} = >_ x[n]z~", where z is a complex variable. The sequence x[n] is
0
multiplied by the term 27" and summed over the range of n from 0 to infinity.

An initial value problem (IVP) is a type of differential equation problem
that involves finding a solution to a differential equation, given an initial condition
[4]. Tt typically consists of a differential equation and one or more initial conditions
that specify the values of the unknown function(s) at a particular point.

gathematically, an initial value problem can be represented as follows:
d_y = f(x,y)y(xo) = yo. Here, dy/dx represents the derivative of the unknown
fu:%ction y with respect to z, f(x,y) is a given function that defines the
relationship between z, y and their derivatives, xg is the initial value of x, and yq is
the initial value of y at xo. The goal is to find a function y(z) that satisfies the
differential equation with also satisfies the initial condition y(xo) = yo. The

solution to the initial value problem is typically an expression for y(x) that
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depends on the given differential equation and initial conditions. There are various
methods to solve initial value problems depending on the type of differential
equation involved. Some common techniques include separation of variables,
integrating factors, variation of parameters, and numerical methods such as Euler’s
method or the Runge-Kutta method. Solving an initial value problem allows us to
understand how the unknown function evolves over the domain of interest, given
its initial behavior. These problems have applications in many fields, including
physics, engineering, economics, and biology, where the behavior of systems can be
modeled using differential equations. This research aims to propose a novel
approach to solving initial value problems using DILAT.

2. PRELIMINARIES

In this section, we present some basic definitions and results.

Lemma 2.1. [4] For k € [a,b] and if { = b—va; then we have

M M—1
A[lu(k‘)‘(g = Z u(b—rl) = u(a +re).
r=1 r=0
In general, we express
18 (511 I
Afu(R)]r = ulk —rt) = u(j +70),k € (€,00),j =k — [t

r=1 =0

<

Definition 2 2. [5] Let u(k) and v(k) be a complex valued functions defined on

[a,b] and ¢ = 2=2. The discrete inner product of u and v with respect to ¢ is defined
as
M—1
(u,v)e = LA u(k)v EZua—i-M (a+10)
r=0

and the norm of u related to ¢ is defined as

lull = (w,w)F = [¢ (A7 [u(e)P) [2]* = [e 3 Juta+ 70y

Definition 2.3. [11] Let u(k), k € [¢,00), be a real or complex valued function.
Then, the (-difference operator A, on u(k) is defined as Ayu(k) = u(k + £) — u(k)

and its infinte (-difference sum is defined by A, 'u(k) = Y u(k + rf).

r=0
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Definition 2.4. [6] Let u(k) and v(k) are the two real valued functions defined on
(—00,00) and if Ayv(k) = u(k), then the finite inverse principle law is given by

v(k) —v(k — Bl) = Z k—rl),BeZ".

Applying the definition 2.2.1, we get the modified identities as follows:

_ RV A B, sBep-—rg{tV
(i) Aek(ﬁ) (ﬁf) ) ( i) Ay 1k - (ﬂ+1)a (iil) A7'R7 = 7;1 (r+1f£

Lemma 2.5. Let £ > 0 and u(k),v(k) are real valued bounded functions. Then

A7 (uw(k)o(k)) = u(k)A (k) — A7 (A o(k + O Au(k)) .
Theorem 2.6. If a function f(x,y) is continuous in a region of the (x,y) plane,
then for any initial condition (xo,vo), there exists a unique solution to the initial

value problem & _ f(z,y), y(xo) = yo in some interval containing x.

dx

Lemma 2.7. If there exists a constant L such that |f(xz,y1) — f(z,y2)| < Lly1 — y2
for all (x,y1) and (x,ys) in a region, then the solution to the initial value problem

s unique in that region.

Theorem 2.8. If the function f(x,y) is continuous and satisfies a Lipschitz
condition with respect to y in a region, then there exists a unique solution to the

d
initial value problem dd_i = f(x,y), y(xo) = vo.

Definition 2.9. The discrete Laplace transform(DILAT) of a function f(z),
defined for all real numbers x > 0, is the function F(s), defined by

F(s) = DILAT{f(z)} = Z_“f (1)

3. MAIN RESULTS

Theorem 3.1. If x € R, then the discrete laplace transform of cosnx is

2s
DILAT (cosnz) =

e“s —eScosn
e2s —2esScosn+ 1

o0 o0 . o0 )

Proof. L(cosnz) = > cosnx e = 3 M™% = Y r(ni—s)
x=0 =

1

=1+ ein—s + eQ(in—s) 4= (1 _ e(in—s))—l — . =
— elni-



B. Govindan, T. Sathinathan, S. J. Borg, Sandra Pinelas, M. Meganathan,

Adv. Theory Nonlinear Anal. Appl. 8 (202

4), 25-36.

29

1

eS

eS

1 —emes

68

es — ein

es —cosn —isinn

e’ —cosn +1sinn

es —cosn —1sinn

e —cosn +isinn

e* — e®cosn +iefsinn

e2s — 2es cosn + cos?n + sin’n

2

e“s —eScosn

L(cosnz) =

€2 — 2es cosn + (cos®n + sin® n)

Which completes the proof of Theorem [3.1]

Theorem 3.2. If x € R, then the DILAT of sinnx is

L(sinnx) =

Proof. L(sinnz) = > " e
=0

— (1 _ e(nifs))fl

efsinn

e2s —2escosn+1°

—xs _ Z ez(nifs) =1+ eni—s + 62(nifs) 4o

=0

1 e’ e’

1 — elni=s) g5 _ eng es —cosn —isinn

e* — e cosn + iefsinn essinn

€2 — 2escosn + cos?n +sin®n €25 — 2es cosn + (cos?n + sin®n)

From this we get the proof of Theorem [3.2]

Theorem 3.3. If v € R, then the DILAT of cos*z is

1 e®

625 .

L(cos®z) = =

1
Proof. We know that L(cos?z) = L [5(1 + cos 295)] =

e® cos 2 }

2 65—1+€25—2€SC082+1

% L[] + L(cos 22)]

By applying Theorem [3.1] we get the proof.

Theorem 3.4. If v € R, then the DILAT of cos® x is

1 e* — e*cos3 43 e — escosl
22 | e2s — 2esc0s3 + 1 e2s — 2escosl + 1

Proof. We have L(cos®z)

1
= 5l

1
[cos 3z + 3cosx] = b7} [L(cos 3x) 4+ 3L(cos )]

By applying Theorem (3.1]) we get the proof.
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Theorem 3.5. If v € R, then the DILAT of cos*x is

1 e?* — escosd y e?* — e®cos2 3e*

23 | e2s — 2escosd + 1 e2s — 2escos2 + 1 es—1]°
Proof. Consider

1 1
L(cos*z) = ﬁL [cos 4z + 4 cos 2z + 3] = 5 [L(cos4x) 4+ 4L(cos2x) + L(3)]

By applying Theorem (3.1]) we get the proof. O

Theorem 3.6. If v € R, then the DILAT of cos® x is

1 e* — e®cosh e — e%cos3 e — e*cosl
— +5 +10 .
24 | 25 — 2escosh + 1 e?s — 2escos3 + 1 e2s — 2escosl + 1

Proof. From the trigonometric expansion of cos®z and Theorem (3.1)) we get the

proof. U

Theorem 3.7. If v € R, then the DILAT of cos®x is

1 e — e®cosb e — eScosd e — e5cos2 10e®
— +6 +15 + .
25 | €25 — 2esc0s6 + 1 e2s — 2escosd + 1 e2s — 2esc0s2 + 1 es —1

Proof. We get the proof by applying the expansion of cos® z and Theorem (3.1)). [
Theorem 3.8. If x € R, then the DILAT of cos™ x is

(i) If n is odd, then

(5] 2
1 e* — e*cos(n — 2r)
L n = E T 2
(cos™@) = oo 2T e cos(n — 2r) + 1 ?
(i1) If n is even, then
(5] 2
1 e** — e*cos(n — 2r) 1
L n = g T : 3
(cos"x) on—1 r=0 o 2escos(n —2r) + 1 ’ 2" (”02) ¥

Proof. The proof of equation obtain by using Theore and Theorem and
proof of the equation ({3]) obtain by using Theorem , and for the induction
on n. |

Example 3.9. Taking n = 15 in equation (3), we get DILAT of cos' x is

L(cos® z) =

1 e* —ecos1h 15 e* — ecos 13
214 25 _ 2escoslh+1 e2s —2escosl13+1



B. Govindan, T. Sathinathan, S. J. Borg, Sandra Pinelas, M. Meganathan,
Adv. Theory Nonlinear Anal. Appl. 8 (2024), 25-36. 31

e?* —e®cosll e?* — e®cos9
105 455
* (625—26500811+1) * (625—263C089+1)

e — eScosT e — e cos b
1365 3003
* (623—2€SCOS7+1>+ <€2s—2€SCOS5+1>

2

e* — e cos3 e* —e®cos 1
2005 6435 .
* (628—2€SCOS3—|—1>+ (623—263(:081—1-1)]

Example 3.10. Taking n = 18 in equation (@), we get DILAT of cos'® x is

1 e? —e*cos 18 e*® — e cos 16
1 18 _ 18
(cos™ z) 917 [623 —2escos 18+ 1 * (628 — 2e%cos 16 + 1>

€% —eScos 14 €% —e®cos12
153 816
* (625—26800814+1> * (628—26800812+1>

€25 — 5 cos 10 e? — e%cos 8
3060 <625 — 2es cos 10 + 1) 8568 (625 —2efcos8+1 )

€2 — e cos 6 e?* — e cos4
18564 31824
* (625—2630056+1)+ (623—2650084+1>

€% — e®cos 2
43758 24310 .
* (625—2680082+1)+ }

4. IVP OF cos™z USING DILAT

An Initial value problem (IVP)is an ordinary differential equation
together with an initial condition which specifies the value of the unknown
function at a given point in the domain. Modeling a system in physics or other
sciences frequently amounts to solving an initial value problem. In this section we
obtain solution of IVP By using DILAT.

Theorem 4.1. The Discrete IVP Aa, = cosxz,ag = 1 has a solution given by
a, =1+ cosl.

Proof. Let cosz = Aa,, < (¢ — 1)l(a,) — ap = l[(Aay,)

e* — e cos1
(es —1)(e? —2e*cos1+1)

< (e = Dl(ap,) — 1 =l(cosz) & l(a,) =1+
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. e —ecosl
ay, =
(es —1)(e? —2e*cos1+1)
1 e?* —e®cosl
n — 1 l_l l_l =1 1 O
¢ * <65—1> <(€23—2€SC081+1)) +eos

Theorem 4.2. The Discrete IVP Aa, = cos’x,ay = 1 has a solution given by

1
a, =1+ §(COS2—|—1).

Proof. We have cos® x = Aa, < (e — 1)l(a,) — ap = I(Aay,)

—_

2s __ s 2 1
() -1 — I{cos? ) — 14 % e e’ cos
(e UCHY (cos™x) = I(an) +2|:(68—1)(625—QGSCOSQ+1)+€S—1

14 1 1 e — e cos?2 L 1
a, = =
2 (es —1)(e? —2e*cos2+ 1) es —1

1 1 e — e° cos 2 1
n=14+= |11 [~ [t
¢ +2 [ (es—l) ((625—265C082+1)>+ (es—l)]

1
an:1+§(0052+1) O

Theorem 4.3. The Discrete IVP Aa, = cos®x,ay = 1 has a solution given by

1
a, =1+ b7} (cos3 + 3cosl).
Proof. Let cos® x = Aa,, & (e* — 1)l(a,) — ap = l(Aa,)
(e — Dl(a,) — 1 = I(cos® z)

1 e? — e®cos3 e* —e’cosl
& (ef = Diay) — 1= = 3
(e )l(an) 92 l€23_2€scosg+1+ <65—265C081+1)]

lan) =1+ 1 e* — e®cos3 43 e? —efcos
an) = —
22 | (e* —1)(e?s —2escos3+ 1) (es —1)(e® — 2escos1+1)

14 1 -1 e — e5cos 3 431 e —eScos 1
an = —
" 22 (e5 —1)(e?s — 2e5cos3+ 1) (e5 —1)(es —2ecos1+1)

1
an:1+§(cos3+3cosl) O

Theorem 4.4. The Discrete IVP Aa, = cos*z,ay = 1 has a solution given by

1
a, =1+ % (cosd + 4(cos2) + 3).

Proof. We have cos?r = Aa,, & (ef — D)l(a,) — ag = I[(Aay,)
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& (e — Dl(ap) — 1 =1(cos z)

1 e? — e cos4 > — e®cos 2
& (e = Di(an) —1 = = 4 3
(e )(an) 93 [625—2€5COS4+1 + <625—2656082+1> - }

1 €25 — e cos 4 e? — e cos 2
& (e = Dian) =1+ = 4 3

la,) =1+ 1 e — e®cos4d
s (a,) = —
23 | (es —1)(e? —2escosd + 1)

4 e — e cos 2 N 3
(es —1)(e? —2e®cos2+ 1) es —1

1
an:1+§(cos4+4(0052)+3) O

Theorem 4.5. The Discrete IVP Aa, = cos’z,ay = 1 has a solution given by
a, =1+ % (cosb + 5(cos3) + 10(cosl)).

Proof. We have cos® z = Aa,, & (e* — 1)l(a,) — ap = [(Aa,)

& (e — Dl(ay) — 1 =1(cos® )

o) =1+ 1 e — e®cos b L5 e — e®cos 3
a,) = —
24 | (e* —1)(e?* —2e%cosbH+ 1) (es —1)(e? —2e*cos3 + 1)

1 1 e?s —e*cosb
Sa,=14+— |71 [t
¢ o [ <es—1) ((623—2€SCOS5—|—1)>
1 e? — e*cos 3
5171 [~!
* (65—1) ((623—2630083—1-1))

1 e?® —escosl
10771 [t
10 <es—1> <(625—268C081+1)):|

1
a, =1+ o1 (cos 5+ 5(cos3) + 10(cos 1)) O

Theorem 4.6. The Discrete IVP Aa, = cos®x,ay = 1 has a solution given by

1
a, =1+ % (cos6 + 6(cosd) + 15(cos2) 4 10).

Proof. We have cos® z = Aa,, & (ef — 1)l(a,) — ap = I(Aay,)

& (e — Dl(an) — 1 =1(cos® )
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la,) =1+ 1 e?* — e*cosb L6 e?* — escos4
& lay) = —
25 | (e* — 1)(e?® — 2escosb + 1) (es —1)(e? —2e%cosd + 1)

15 e?* — e®cos2 N 10

(es —1)(e?® — 2e%cos2 + 1) es —1

1 1 e?* — e®cosb

Sa,=1+— |11 [-!
¢ % [ <es — 1) <(623 — 2escosb + 1))

1 e?® — e*cosd

61! [~!

i (es - 1) ((628 — 2escosd + 1) )

1 e?s — e*cos2 10
15171 [~ [t
i <65—1> <(625—2680082+1)> * (65—1):|

1
&a, =1+ % (cos6 + 6(cos4) 4 15(cos2) + 10) O

Theorem 4.7. The Discrete IVP Aa, = cos*x,ay = 1 has a solution given by

(5]
a, =1+ S >~ ncpcos(n — 2r) n is odd
r=0
n—1
1 FZ] 1
a, =1+ ST > neqcos(n —2r) + 2—n(nc%) n is even
r=0

Proof. We shall prove this theorem by induction on £ as two kind in odd and even
cases.

For the odd particular values £ = 1,3,5 we have the results in the Theorem
,, and for the even particular values k = 2,4, 6 the results of Theorem
,, which we have proceeding like this induction on k, we get the proof.

O

The following figures represents the numerical illustration of the cosine functions
of power 1,2 and 3 and also the solution of initial value problems are presented for

better understanding of our findings.
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5. CONCLUSION

In this research work, the Discrete Laplace transform(DILAT) is successfully
defined and analyzed with the help of difference operator. We have successfully
derived formulas and results for the higher order cosine functions by applying
initial value problems to obtain applications. Finally we conclude that this
investigation describes the solutions of each initial value problems for our findings
by using MATLAB in a graphical manner.
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