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Abstract

The paper considers the fractal cubes and presents all the data according to which it is possible to recognize
whether a given fractal cube is a dendrite. The method of detecting the dendrite property for a fractal cube
is based on the finding of the bipartite intersection graph for the fractal cube.
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Let n ≥ 2 and let D = {d1, · · · , dN} ⊂ {0, 1, . . . , n− 1}k. We call the set D a digit set. The set
D and the integer n determine a system of contraction similarities S = {Sj(x) =

1
n
(x + dj)}Nj=1 in

Rk, whose attractor K satisfies the set equation

K =
K +D

n
(1)

The attractor K is called a fractal k-cube of order n with digit set D. In special cases where k = 2
and k = 1, K is called a fractal square and a fractal segment, respectively.

Though the topology of fractal squares was addressed by many authors [2, 5, 10, 3], the topology
of fractal cubes is still waiting for the researchers attention. The purpose of the paper is to describe
how to detect the sets D for which the fractal cube K is a dendrite. The authors were motivated by
the question of Hui Rao: "How to detect a fractal square dendrite?" and proceed to find answer to
this question and many related ones.

There is a sufficient condition for the dendrite property of self-similar sets [1, 7], which states
that if a self-similar set K has the single intersection property and its bipartite intersection graph is
a tree, then K is a dendrite. As proved in our previous paper [4], this condition is also necessary for
fractal squares. We believe that this is true for fractal cubes as well.
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In Section 1, we present the results of our paper [8] that describe the system Ak of faces Pα of the
unit k-cube P k and of a fractal k-cube K. In Section 2 we then formulate the intersection theorem
for a pair K1, K2 of fractal cubes, which defines the system Σ of equations for the intersections Fα

of faces of these two fractal cubes.Then we consider the structural graph for that system.
In Section 3 we expose the results of our paper [7] on the single intersection property for self-

similar sets and the intersection graph criterion for the dendrite property for self-similar sets, which
initially appeared in [1]. In Section 4 we present a roadmap for defining whether the given fractal
cube is a dendrite.

1. The faces of a fractal cube.

1.1. The system of faces of the unit cube P k.

A fractal k-cube K is always a subset of the unit k-cube P k = [0, 1]k in Rk.

The system of faces of the unit cube P k is defined by the parameter set Ak = {−1, 0, 1}k. Ev-
ery vector α = (α1, . . . αk) ∈ Ak defines the unique face Pα of the cube P k through the equation
P k ∩ (P k +α) = Pα. The dimension jα of Pα is equal to k − |α|, where |α| = (|α1|+ . . .+ |αk|), so
Pα is a unit jα-cube.

There is an order relation ⊑ on the set Ak, defined by the rule:

β ⊑ α if for any i = 1, ..., k, αi ̸= 0 implies βi = αi.

Thus, β ⊑ α iff Pβ is a face of jα-cube Pα. A vector α ∈ Ak is maximal with respect to the relation
⊏, if and only if for any i, αi ̸= 0. In this case Pα is a vertex of the cube P k.

We say that α,β ∈ Ak \ {0} are complementary and write α ⊥ β, if
k∑

i=1

|αiβi| = 0. If α ⊥ β,

then α+ β ∈ Ak and α ⊏ α+ β. The relation α ⊥ β holds iff Pα ∩ Pβ = Pα+β. We denote by Aα

the set of all β ∈ A\{0}, complementary to α.

The set {α+P k,α ∈ A\{0}} is the set of all neighbors of P k in the family {d+P k, d ∈ Zk}, and

∂P k =
⋃

α∈Ak\{0}

Pα (2)

Similarly, for each α ∈ A the boundary of Pα is represented by the equation

∂Pα =
⋃
β⊐α

Pβ =
⋃

γ∈Aα\{0}

Pα+γ (3)

1.2. The faces of a fractal cube K.

Definition 1.1. Let K be a fractal k-cube. For α ∈ Ak\{0}, the set Kα = K ∩ Pα is called the
α-face of K.

Theorem 1.2. For each α ∈ Ak, the set Kα = K ∩ Pα is a fractal k-cube with digit set Dα =
D ∩ (n− 1)Pα.
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If α⊥β then Kα+β = Kα ∩Kβ = K ∩ Pα+β is a fractal k-cube with digit set Dα+β = D ∩ (n−
1)Pα+β. The formulas (2), (3) imply the following equalities.

∂K =
⋃

α∈A\{0}

Kα; ∂Kα =
⋃

β∈Aα\{0}

Kα+β. (4)

2. The equations for the intersection of fractal cubes

2.1. The digit sets Gα and Gαβ

Definition 2.1. Let K1, K2 be fractal k-cubes of order n with digit sets D1, D2. Denote by Fα the
intersection sets Fα = K1 ∩ (K2 +α), α ∈ Ak. In particular, F0 = K1 ∩K2.

To study the structure of F0 = K1∩K2, one should take into account all intersection sets Fα and
establish the relations between these sets.

The α and (−α) faces of the fractal cubes K1 and K2 are K1,α = K1∩Pα and K2,−α = K2∩P−α

respectively. Therefore, Fα = K1,α ∩ (K2,−α +α).

According to Theorem 1.2, the sets on the right side of the equation may be considered as fractal
cubes themselves; therefore, we have the following proposition.

Proposition 2.2. Given fractal k-cubes K1, K2 of order n with digit sets D1, D2 and α ∈ Ak,
the set Fα is the intersection of fractal cubes K̂1, K̂2 with digit sets D̂1 = D1 ∩ (n − 1)Pα and
D̂2 = D2∩ (n− 1)P−α+(n− 1)α, respectively. Furthermore, for any γ ⊥ α, Fα+γ = K̂1∩ (K̂2+γ).

It follows from Proposition 2.2 that the intersection of fractal cubes K̂1 and K̂2 and all their faces
may also be considered independently of the initial sets K1, K2.

Definition 2.3. We denote by Gα the intersection of the digit sets D̂1 = D1 ∩ (n − 1)Pα for K1,α

and D̂2 = D2 ∩ (n− 1)P−α + (n− 1)α for (K2,−α +α), which is equal to D1 ∩ (D2 + (n− 1)α). We
denote by Gαβ the set D1 ∩ (D2 + nα− β).

The digit set Gα is naturally associated with the set Fα. If α = 0, the set Gα becomes G0 =
D1 ∩D2.

2.2. The intersection theorem and the graph ΓΣ.

The following theorem establishes the relations between the sets Fα:

Theorem 2.4. [8] The family {Fα,α ∈ Ak} of intersections Fα = K1∩(K2+α) satisfies the system
Σ of equations.

Fα =
⋃
β⊒α

Tαβ(Fβ), α ∈ Ak, (5)

where for any β ⊒ α,

Tαβ(Fβ) =
1

n
(Fβ +Gαβ) and Gαβ = D1 ∩ (D2 + nα− β) (6)

We consider the structural graph ΓΣ of the system Σ defined by equations (5),(6), which is the
main tool for finding the properties of sets Fα.
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Definition 2.5. The structural graph ΓΣ is a directed graph, whose vertices are all α ∈ Ak, for
which Fα ̸= ∅. A directed edge in ΓΣ from α to β exists if and only if α ⊑ β and the operator Tαβ

is non-degenerate.

In general, the graph ΓΣ may contain 3k vertices and 5k edges, and 3k of these edges are loops
from α to itself. We mark each edge with Gαβ.

Figure 1: Intersection of two fractal squares

However, some of the vertices and edges in the graph ΓΣ vanish. This occurs for α such that
Fα = ∅ and for those edges (α,β) for which Tαβ(Fβ) = ∅.

It is obvious that
Tαβ(Fβ) = ∅ iff Gαβ = ∅ or Fβ = ∅ (7)
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Figure 2: The maximal possible structure graph ΓΣ for the intersection of two fractal squares (on the left) and the graph ΓΣ

for Example 1 (on the right). The picture on the right shows the subgraphs Γ(−1,0) and Γ(0,−1).



Dmitry Drozdov, Andrei Tetenov, Adv. Theory Nonlinear Anal. Appl. 8 (2024), 73–80. 77

A set Fα is empty if Gα = ∅ and for any β ⊐ α the set Fβ + Gαβ = ∅. Applying (7) to all
β ⊐ α, we deduce the following emptiness condition for Fα:

Lemma 2.6. [8] A set Fα = ∅ if and only if for any β ⊒ α and for any finite sequence α = α0 ⊑
α1 ⊑ . . .αp−1 ⊑ αp = β,
the product #Gα0α1#Gα1α2 . . .#Gαp−1αp#Gβ is equal to zero. □

For these reasons, due to the reduction of all empty vertices and empty edges, the structure graph
Γ for the system Σ defined in Theorem 2.4 has the set of vertices VΣ = {Fα : α ∈ A,Fα ̸= ∅} and
the set of edges EΣ = {(Fα, Fβ) : α ⊑ β, Gαβ ̸= ∅, Fβ ̸= ∅}.

In general, the graph ΓΣ may be disconnected.

We say that two vertices Fα, Fβ,α ⊏ β are connected by a directed path in ΓΣ, if there is a finite
sequence α = α0 ⊏ α1 ⊏ . . .αp−1 ⊏ αp = β such that for any j = 0, . . . , p sets Fαj

̸= ∅ and sets
Gαj−1αj

̸= ∅ for j = 1, . . . , p.

We write β ≻ α if there is a directed path in Γ from Fα to Fβ.
If β ≽ α or α ≽ β then we say that α and β are Γ-comparable.
We denote by Γα a subgraph in Γ, whose vertices are all Fβ such that β ≽ α. The relation β ≽ α

implies that Γβ is contained in Γα.
We say that β is maximal for Γα, if Γβ is a single vertex Fβ. We say that β is minimal for ΓΣ, if

there is no α such that α ≺ β.

The following theorem states the conditions under which Fα is countable, finite, or a single-point
set.

Theorem 2.7. [8] Let K1, K2 be fractal k-cubes of order n and ΓΣ be the structural graph for the
intersection of K1 and K2.
(a) If there is a vertex β in Γα, such that #Gβ > 1, then the set Fα is uncountable;
(b) If for all vertices β in Γα, #Gβ ≤ 1 then the set Fα is countable;
(c) If for all maximal vertices β in Γα, #Gβ = 1 and Gβ = ∅ for all other vertices in Γα, then the

set Fα is finite. In this case, #Fα is equal to the sum of all compositions
p−1∏
j=1

#Gαjαj+1
, taken over

all chains α = α1 ≺ . . . ≺ αp = β, where β is maximal in Γα;
(d) The set Fα is a singleton if and only if Γα is a chain α = α1 ≺ . . . ≺ αp in which for all
j ≤ p− 1, #Gαjαj+1

= 1, Gαj
= ∅ and #Gαp = 1.

2.3. Intersections of the pieces of a fractal cube K.

To examine the intersections of copies of a single fractal cube K, we consider the intersections of K
with itself. In that setting, the sets Fα are the intersections of opposite faces Kα and K−α of the
same fractal cube K, implying several relations between the parameters, containing α and −α. If
α = 0, then F0 = K. If α ̸= 0, then F−α = Fα − α. A direct computation shows that, for any α,
Gα = D ∩ (D + (n− 1)α) implies G−α = Gα − (n− 1)α. Similarly, G−α−β = D ∩ (D − nα+ β) =
Gαβ − nα+ β.

Proposition 2.8. [8] Let K be a fractal cube with digit set D and let d1, d2 ∈ D and K(d1), K(d2) be

copies of K. If d2−d1 /∈ Ak, then K(d1)∩K(d2) = ∅. If d2−d1 = α ∈ Ak, then K(d1)∩K(d2) =
Fα + d1

n
.
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3. The single intersection property and dendrite criterion.

Definition 3.1. [7] Let K = {Ki, i ∈ I = {1, . . . ,m}} be a finite system of continua in a Hausdorff
topological space X. We say that K has single intersection property, if for any i ̸= j ∈ I, intersection
Pij = Ki ∩Kj consists of at most one point. We call K a SIP-set system.

In the context of Definition 3.1, we denote K =
⋃
i∈I

Ki, P =
⋃
i̸=j

Pij and Pi =
⋃

j∈I\{i}
Pij. Taking

into account K as the subspace of X provided by the induced topology, we see that the set Pi is the
boundary ∂Ki of the set Ki in K, and that its interior is K̇i = Ki\Pi. Observe that for any i ∈ I,
#∂Ki ≤ (m− 1).

Definition 3.2. Let S = {S1, . . . , Sm} be a system of injective contraction maps on a complete metric
space X and K be its attractor. Let K(S) = {K1, . . . , Km}. S is called an SIP system of contractions
if the system K(S) is an SIP set system.

Applying Theorem 2.7, we get the following single intersection property criterion.

Corollary 3.3. [8] A fractal cube K has the single intersection property iff the structure graph Γ(Σ)
is a union of chains 0 ≺ αi1 ≺ . . . ≺ αipi for which all αij are different and such that for all i
#Gαipi

= 1 and for all i, j for which j ≤ pi − 1, #Gαijαi,j+1
= 1, Gαij

= ∅.

2. For a SIP set system K (resp. SIP system S) we define its intersection graph G(K) (resp.
G(S)) as a bipartite graph (K, P ;E) with parts K and P , for which an edge {Ki, p} ∈ E iff p ∈ Ki.
We call Ki ∈ K white vertices and p ∈ P – black vertices of the graph Γ. The set N(Ki) of neighbors
of any white vertex Ki is Pi, whereas for any black vertex p, N(p) = {Ki : p ∈ Ki}. Each p ∈ P is
the intersection point of at least two of the sets Ki, therefore, deg(p) ≥ 2.

Theorem 3.4. [1, 7]. Let S be a system of injective contraction maps in a complete metric space
X, which has the single intersection property. The attractor K of the system S is a dendrite if and
only if the intersection graph G(S) is a tree.

Theorem 3.5. If a fractal k-cube K =
K +D

n
has the single intersection property and its intersec-

tion graph G is a tree, then K is a dendrite.

3.1. Finding black ramification points in the graph G.

Theorem 3.6. Let K =
K +D

n
be a fractal cube which has the single intersection property.

If there are α,β ≻ 0 such that Fα = Fβ ̸= ∅, then for any triple d, d + α, d + β ∈ D the copies

K(d), K(d+α) and K(d+β) intersect in a single point x =
Fα + d

n
=

Fβ + d

n
.

Proof. It is clear that K(d) ∩ K(d+α) =
Fα + d

n
и K(d) ∩ K(d+β) =

Fβ + d

n
. The equality Fα = Fβ,

implies

K(d) ∩K(d+α) = K(d) ∩K(d+β) =
Fβ + d

n
=

Fα + d

n
= {x},

therefore K(d) ∩K(d+α) ∩K(d+β) = {x}.
Therefore the white vertices corresponding to K(d), K(d+α), K(d+β) are connected to the same

single black vertex p corresponding to the point x.
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Figure 3: A triple of copies with unique intersection point and a triple of copies forming a cycle.

On the other hand, if d, d−α, d− β ∈ D then the intersection points are different.

K(d) ∩K(d−α) =
Fα + (d−α)

n
; K(d) ∩K(d−β) =

Fα + (d− β)

n
;

K(d−α) ∩K(d−β) =
Fα−β + (d−α)

n
=

Fβ−α + (d− β)

n

Therefore the white vertices corresponding to K(d), K(d+α), K(d+β) form a cycle consisting of 3
white and 3 black points in the graph G.

Corollary 3.7. Let B = {d1, ..., dm} be a subset of D which satisfies the condition: For any
di, dj, dk ∈ B,

(dj − di), (dk − di) ∈ A \ 0 and Fdj−di = Fdk−di ̸= ∅.

Then there is a point x ∈ K such that for any di, dj ∈ B, K(di) ∩K(dj) = {x}, and x corresponds to
a black vertex of order m in G.

4. How to test the dendrite property for a fractal cube.

Let K be a fractal k-cube. To check the dendrite property for K one should perform the following
steps:

1. Find all the sets Gα, Gαβ for the system Σ = Σ(K,K), and write the system Σ. Following
Definition 2.5 and Lemma 2.6, eliminate all vanishing vertices and edges and construct the
graph ΓΣ.

2. Using the Corollary 3.3 check the single intersection property for the cube K If it fails, K is
not a dendrite.

3. Construct the bipartite intersection graph for the fractal cube K, connecting the intersecting
copies with their intersection point by the edges. Be aware of multiple points, mentioned in the
Corollary 3.7. If this graph is a tree, then K is a dendrite.
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Figure 4: A fractal cube dendrite and its intersection graph.[9]
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