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Abstract

In this paper, we give some sufficient conditions for the existence of periodic solutions for some autonomous
nonlinear ordinary differential equations of order n. The proposed method is based on the use of Brouwer’s
degree and especially the homotopy invariant of the topological degree.
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1. Introduction

In the qualitative theory of differential equations the main problems are the study of their periodic
solutions, their existence, their numbers and their stability. It is interesting to note that the existence
of periodic solutions of nonlinear autonomous differential equations has not been extensively investigated.
The Poincare-Bendixon theorem [19], which is a powerful tool for the investigation of periodic solutions of
systems of second order differential equations, is not applicable for third and higher order systems. In what
follows, we use the idea of Brower’s degree theory (see, e.g. [10, 11, 13, 15, 16]) to prove the existence of
periodic solutions of higher order systems.
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The existence of nontrivial periodic solution of autonomous nonlinear third, fourth and fifth order differential
equations of the forms

xl/l + f(l’, ':U/7 ZL'”) = 07 f(xv _xlv x”) = _f(xa xlv .CC”),
.T(4) + f(',ra .T/, ﬂ?//, xlll) = 07 f(_xv xlv _x//7 LU///) = _f(wv xlv xlla JI///), (1)
.fL'(5) —|—f(113,33,,$”,l‘”/,1’(4)) = 07 f(xv _x,axlla_xlllvx(4)) = _f(l'axlaxllvxlllvx(4))v (2)

has been investigated in [4, 5, 17]. For periodic problems of ordinary differential equations of higher order,
other results are found in [1, 2, 3, 8, 9, 14].

Let U be an open and bounded set in R”. For any y € R™, we put

Cr(U.R" = {f e CWRY i f € CTURM.0< <},

D(U,R") = {f eC(U,R") :y ¢ f(aU)}, D, (T, R") = DYT, R™).

For f € C}(U,R"), the Jacobian of f inz € U is J¢(x) = det[gg (2)] \<ij<n- Wesay yis a regular point
of fif Jy(x) # 0 for all x € f~1(y). Now, we define the topological degree.

Definition 1.1. Suppose f € D;(U, R™) and y is a regqular value of f. Define the degree of f at y relative
to U, as the integer

deg(f,U,y) = > sen(Js(x)). (3)
z€f~1(y)

According to the Sard’s Lemma [15], the set of f~!(y) is finite. Also, the topological degree theory gives
us information on the existence, number and nature of solutions of the equation f(z) = y. According to the
Kronecker’s existence theorem [15], if deg(f,U,y) # 0 then f(z) = y has at least one solution in U.

Theorem 1.2 (Homotopy Invariance Property, [11]). If f,g € Dy(U,R™) and H(t) = (1 —t)f +tg €
D, (U,R") for all t € [0,1], then
deg(f,U,y) = deg(g, U, y).

Theorem 1.3 (Rouché Property, [11]). Let f,g € Dy(U,R"™) and
|f(z) — g(z)| < dist(y, f(OU))  (z € OU).

Then
deg(f,U,y) = deg(g,U,y).

For C = (c1,- - ,¢n) € R", we write |C|oo = max{|¢;| : i =1,--+ ,n} and let Q. = {C € R" : |C|s < c}.
For an interval I and f € C(I,R"), the norm ||.|| is defined as

IF1} = max | f ()]oc- (4)

If P is a matrix then || P| denote it’s usual norm.
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2. Notations and Preliminaries

In this section, we give some sufficient conditions for the existence of periodic solution of the systems of
the second and third order nonlinear autonomous differential equations in R".

Theorem 2.1 (Emamirad-Mehri, [12]). Consider the second order system
X"+ F(X,X') =0, (5)

where X is a R"-valued function of t in R and n is a positive integer and for F' = (f1,---, fa)T, in which
the functions f1,--- , fu are of the class C* in a neighborhood of the origin in R?". Consider ¢ >0, k € (1,2)
and a diagonal matriz A as:

A:diag(ab"' aan)v a; >0a
Amax

k< < ——,  Gmin = min {a;}, amax = max {a;}.
Amin k—1 1<i<n 1<i<n

Define,

D = {(X,X) : [X]oe <26, |X|ow < 26ama |

T
= S EE— = k 1
0 Qmin + Gmax 1 ( * )wo

Now, if éc > (k;;l)M, where

min

0= min{\sin(aiwj)\ =1, ,n,j = 0,1},

M= max{\A2X — F(X,X)| (X, X) € D},

then there exists w, with wy < w < wy such that for some proper initial conditions, the system (5) has a
solution which satisfies the following boundary conditions:

X(0) = X(w) = 0. (6)

Corollary 2.2 (Bayat-Khatami, [4]). Consider the fourth order differential equation (1). Assume that there
exist a,b,c >0, and k € (1,2) such that

ESVh S 2 k-1

c6f% > M(k +1),

5:min{sin< an > sin< br > sin (onr(k:+1)> sin <om(l<:+1)>}
av8) ™ \avs) " Tars ) Tars )

M = max{|ax” + bx — f(m,x’,m",x"’)‘: (x, 2", 2" ") € D},

where

D= {xy,:vy |x\<20|y|<20!x|<2ca|y|<2ca}

a++vVaZ—4b a—+vVa?—4b
B R Al s S

Then the equation (1) has a periodic solution.
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The following lemma will be used in the next discussions.

Lemma 2.3. Let

A =diag(aj,az, - ,a,), a;>0
be a positive diagonal matriz and apin = min{a;} and amax = max{a;}. If k € (1,2) and k < Zr‘zﬁ < %,
then

deg(cos(Aw;)C, Qc,0)= (—1) (1 =0,1), (7)

where
T

wp= ———, w1 = (k+ 1)wp. 8
0 Qmin + Gmax ! ( )0 ()

Proof. Using Definition 1.1, we have

deg(cos(ij)C', Qe, O): sgn(H cos(aiwj)>. 9)
i=1
To prove (7), we have
(k= D < ajwy < 2 —I—E
k+1 RS

and
T < ajw; <27.

O
Now, we generalize Theorem 2.1 for third order systems as follows:
Theorem 2.4. Consider the third order system
X"+ F(X, X', X") =0, (10)
where X is a R"-valued function of t in R and n is a positive integer and for F = (fi,---, fn)T, the
functions f1,--- , fn are of class C* in a neighborhood of the origin in R3". Consider ¢ > 0 and k € (1,2)
with a diagonal matriz A as:
A = diag(ai, - ,ap), a; > 0,
Gmax 2 .
e O 0= : = "
ks <y O min {ai},  Gmax = max {a;} (11)
Define,
2
D= {(X, X', X") | X|oo € ——,|X|oe < 26, |X"|oc < 20ttma |,
Omin
T
wg=———79—, wi = (k+ Dwp.
0 Gmin T Omax ! ( ) 0
Now, if we have
Scay, > M (k+ 1), (12)

where

5:min{|cos(aiwj)| =1, ,n,j :0,1},

oo’

M = max{\A2X’ — (X, X, X" (X, X, X7 € D},
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then there exists w with wy < w < wy such that for a proper initial conditions, the system (10) has a solution
that satisfies the following boundary condition

X(0) = X(w). (13)
Proof. Consider the following system:
X"+ F(X, X', X") =0,

X(0)=-A"1C,
X(0) = 0, (14)
X"(0) = AC,

where |C|s < ¢ and X is a R™-valued function of ¢ in R. Now, we consider the following integral equation:

X(t,C,A)= —A"" cos(At)C + \G(t, X, X', X"), (15)
Gt X, X', X")= A2 / (cos (At — s))—[n) [AQX/(S) — F(X(s), X'(s), X”(s))} ds.
0

One can easily verify that X(t, C, 1) is the solution of (14) with X(O, C, )\): —A~1C and this solution is
not identically constant, since X" (0)7/é 0. The X (t, C, 1) is the unique solution of (14) and the existence of
such a solution for small |¢|, follows from the standard existence theorem. Taking |¢| small enough, we can
obtain the following estimates:

2
X(H)oo € =) X' B)|oe <26 X" ()]0 < 2camax.

Gmin

Now, using the continuity theorem, we can extend this solution for the whole interval I = [O, (];;1,)”}, and

this solution will be continuous on the boundaries. Using (12), we have

2tM§7rM(k+1)< de c

/ "
|Gt X, X', X")||< 2z ai i
and thus 5
IXtons—. |XECD[<2e X (40D 200m0n
min

In the following, we show that this solution satisfies (13) for some w where wy < w < w1, or equivalently, we
show that the number w where wy < w < w; and the point C' where |C|s = ¢ exist such that X (w,C,1) = 0.
According to Lemma 2.3, we obtain

deg(X(wj,C’, 0),90,0)2 (17,  (j=0,1). (16)

On the other hand w have

L e , (17)

Gmin

HX(WJ»,C, 1) — X(w;,C, O)H: HG(wj,X,X’,X”)

and also

HX(vaC, O)H: A~ cos(Aw;)C| = max {‘cos(aiwj)‘ |Z"}

i=1,--.n

|ci] ) de
—) min_|cos(aiw;)|>
a; /1=1,-n Amin

> max(

i=1,n

Thus by Theorem ?? and (16)-(18), it follows that
deg(X(wj,C, 1),QC,O>: (—1¥  (j=o0,1).

Now, by virtue of Theorem 77 it implies the existence of a number w, wy < w < wi and a point C' such that
|Cls = ¢ and X (w,C, 1) = 0. O
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Corollary 2.5 (Bayat-Khatami, [5]). Consider the fifth order differential equation (2). Assume that there
exists a,b,c >0 and k € (1,2) such that

1 a k—1 2
k- <—F7<—+

kb 2 k-1
c6f% > (k+ 1)M,

5:min{COS< o > cos< b > coS <047r(k+1)> cos <Om(k+1)>}
Oé+ﬁ ’ Oé‘i‘ﬁ ’ 05—}—6 ’ Oé‘i‘ﬁ )

M — max{|ax/// + b — f(a:, CUI7ZEH, :L’”/, :11(4))‘: (%,l’/, 1:”,:1:”’,117(4)) c D}7

where

2 2
D ={(@,y.a 2"y Jo| < E lyl < 5 2] < 2¢,ly/| < 26, |a"| < 20, |y| < 2ca},

o a++va?—4b 5= a—+va?—4b
V2 V2

Then the equation (2) has a periodic solution.

Corollary 2.6. Let F be an odd function of class C* in a neighborhood of the origin in R™ and let DF(0)
be the derivative of F at the origin. If there exists a diagonal positive matriz A with k < ‘;‘;ﬁ < % for

k € (1,2), such that the norm of DF(0) — A? is sufficiently small, then for some w in (wo,w1) these exists

a 2w-periodic solution for
X"+ F(X')=0.

Proof. According to Theorem 2.4, it is enough to show the smallness of the norm of matrix DF(0) — A2,
There are numbers € > 0 and d > 0 such that for all |X’'|, < 2d, we have

[(DF(0) — A%)X'|__ < |DF(0) — A?|__|X'|oo — ¢,
da?

< ﬂ|X’|OO — &,

~(k+)m

Amax+Amin

exists @ > 0 such that if |X'|o < 2«, then

where § = cos(m). From the differentiability of F' at the origin it follows that for 55 > 0, there

|F(X') - A°X'| < %p{’\o@ +|DF(0)X' — A2X| .
Now for ¢ = min{4,d} and | X’|- < 2¢,

da?

7‘[ { Fl ){/ 42 ){/ . )(/ < 2 }< maxc .
sup [F(X) ‘00 X ¢ (k+ )7
O

Remark 2.7. In Theorem 2.4, if A = al,, then there is no such k that satisfies (11). For this purpose, we
extend system (14) on R"! as follows:

X" = X+ F(X, X, X"), (19)
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where

i —e* ] [F) — ey?]
0 lF Yy Fl
_ - a2l 0 _ 2 F
sz, o " N o N R
0 Fn F,

K20 -~ 0 0 | L 0]

Using the transformation ):( = PU, the matriz A = P1A2P s q diagonal matriz whose diagonal elements
are eigenvalues of matriz A%. Thus, the new form of this system is:

U" = —AU' + P~'F(PU, PU', PU"). (20)
The diagonal elements of A consist of the eigenvalues of A?:

2 2
a®+d a®—d
)\1: 5 )\nJrl: 9 )

2 Ai:aQ’ (i:27"'an)7

and d = Va* — 4e2k2. Now if 2¢k < a® < %ekz, then these eigenvalues A; are real and w is less than 4.

Also, the P matriz is given as follows:

p 0 q
P = 0 Tl 1 0 (P7 q,T 7é 0)
p>\6712+1 0 _%
Moreover, the inverse matrix of P is:
e 0 G
Pl=| 0 b
T
An, —
w0 @
Now, we have to show:
~ A
|PE(PU, PU PUT|< 2
where
i=1,- ,n+1 a -+ )\n—l-l

"~ - - 2% ~ -
D= {(X,X’,X”): X oo < 251X oo < 26, | X" |00 < 2ca}.
a

On the other hand, we have HF(X, X', X")

‘: M < % We can choose €2 small enough, such that

a2c

et

(Y Y vV
|P(x %, %) .

Now, we have

_ . 2
[P E(PULPU PUT) | < PN < 1P

which by choosing HP_1H< %/, for p,q,r being sufficiently large, the proof is complete.
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3. Main Results

In this section, we use Theorem 2.1 and Theorem 2.4 to show the existence of periodic solutions of
certain higher order equations.

Theorem 3.1. Consider the following equation
221 4 f(x,- 7$(2n71)): 0, (21)

where f is of class C? in a neighborhood of the origin in R?™. Suppose that there exist a;,i = 0,--- ,n — 1
and a closed domain D containing the origin of R?", such that

n—1
M = {’Z a;z?) — flz,2,- - ,x(anl))‘: (z,2/,- - ,x(znfl))e D} ,
1=0

18 sufficiently small. Also let
f(_x’ xl, _.I'”, SN _w(Ql)’ e ’m(zn_l)): _f(x’ xl, x”) . ’x(2i)’ e 7(x(Qn—l))’
then the equation (21) has a periodic solution.

Proof. We consider the following two cases.
Case 1. Let n be an odd positive integer. The equation (21) can be rewritten to the following system

( x| = —a’ry + ams,
xg = —a23:2 + axs,
(22)
" _ 2
Tp_1 = —0“Tp_1 + Ay,
-1
| 2 = (n— Dawn + Y75 vies — A0 (),

where

(" —Lin—i om—it1)
Vi (z - 1>( )" a ’

(%

with the arguments of f(.) are as:

2j +1 i—1
.’E( J) — o1 wi_l’jxioﬁ ,
225+ — ($(2j))’

where

(LY ()a?u ) (i <),
Wi; =

0 (i > ).

Now, if the function f is as:

Pt D)= 3 a0 4 g a0t a0,
=0

with 5;’s satisfying the following conditions:
2n —1
2

n—1
Zwidﬂj + (_1)n7i (?>a2(ni) =0, (l =0, -- 7n_2)’
j=t

a? < Bt < (n+1)d?,
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then the system (22) can be rewritten as:

(2! = —a’x) + axy,
o = —a’zy + axs,
(23)
o = —a’z,_1 + av,,
x! = ((n —1)a® - Bn_1>xn — anl,lg(.).
Consider ¢ > 0,a > 0 and k € (1,2) and we define
X = (xl) T 7xn)Ta A= diag(aa T a \//anl - (7’L - 1)&2),
Gmin :min{a, \/ﬁn,l —(n— 1)a2}
Amax :max{a, \/Bn—l - (TL - 1)0’2}
Gmax 2
k< < — 24
"~ Gmin k-1 ( )
wp =————, w1 = (k+ wo

Qmin T Omax

D ={(X,X) + [ X0 < 26, X|oo < 2cama |
with
aZ. > 2(k+1)da,
{ 20a"c > (k+1)M,
where
M = max{‘g(X,X’){oo: (X,X") e D}
§= min{] sin(a;wo)], | sin(aiwl)]}, @ = Gmin, Gmax-

With « small enough, if M is sufficiently small, then by Theorem 2.1, there exists w with wy < w < w1 such
that the system (23) has a solution that

So, for equation (21), we would have

2?9(0) = ) (w) =0, (i=0,--,n—1). (25)
Now if in addition, we have

! "o 2n—2 2n—1 A/} 2n—2 2n—1
g(_x7$7_$ , L 7”_,_1,(71 )7'7;(“ )):—g(l',l',l' y L 7"'7x(n )’x(n ))

then the system of equation (23) has a periodic solution of period 2w. For this, we can extend the obtained
x(t) with boundary condition (25) to [0, 2w] as follows:
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This solution satisfies (21) and has continuous property at t = w with

20(0) = 29(w), (i=0,---,2n—1).
Case 2. Let n be an even positive integer. The equation (21) can be rewritten to the following system
2 = —a’x1 + axy + axs,
7 = —a’ry + azy + axs,

T = ((n —1)a® - Oé)xn+1 + >0 vfx

V; (Z S 2),
vy =

Vi—1 + v; (Z > 2),

where

and the arguments of f(.) are as:

{ . ZHQ T,

(2541 — (3;(29)) ’

where

Wi—1,5 (i <2),

Z7j -

wi—gj +wi—1; (i >2).

Now, if the function f is as:

n—1
fla, - 7x(2n—1)): Zgﬂ(%) +g(z
=0

with 5;’s satisfying the following conditions:

2n —1
T 2</8n 1+a<(n+ )
v + 5 =0,
where
n—1
= Y Bjwiy,
j=k—2

then the system (26) can be rewritten as:

7! = —a’r + azs + axs,
2 = —a’wy + azy + axs,

Ty = ((n —1)a® —a— 5n—1)$n+1 —
Defining

X = (xla"' ,xn,an)T

$(2n—1))

19()-

Gmin = min{a, VBn—1— (n—1)a% + a}

Omax = max{a, \/571—1 —(n—1)a®+ a}

- #f())

)

(26)
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If we have

20a"c > (k + 1)M,

then by Theorem 2.1, there exists w, wy < w < wy such that the system (26) has a solution that

And similar of Case 1, if the parity conditions hold then the equation (21) would has a periodic solution. [J
Theorem 3.2. Consider the following equation
2(n+1) 4 £z, 7x(2n)): 0, (28)

where f is of class C% in a neighborhood of the origin in R*"*1. Suppose that there exist a,o and a closed
domain containing the origin of Rt such that

M = max{’nz_:l a;z D — f(ac,x', ‘e ,:U(Z"))’: (ac,x', “e ,:U(2"))€ D},
i=0

1s sufficiently small. Also let
f(z,—a' 2",  —pitD) ,x(Q")): —f(z, 2 2", 22 733(271))7
then equation (28) has a periodic solution.

Proof. We consider the following two cases.
Case 1. Let n be an odd positive integer. We can transfer this equation to the following third order system:

(2" = —a®a! + axh,
oy = —a?xly + axl,
: (29)
oy = —a’z),_y + aa,
1
xg’:(n—l)a xn—Z? 1 Ui% _a” rf(.),

where the arguments of the function f(.) are as:

22541 — Zf;l Wiy, (G=0,---,n—1)
227+2) — (DY

Now if the function f is as:

f((L‘, o 2n) Z/B x (2i+1) +g( . (271))7

1=0
with (;’s satisfying the following conditions:
2n —1
2

n—1
Z ofiwi_ljjﬁj + (_1)n7i <’I’L> a2(n7i) =0, (7, =1,---,n— 2)’
j=t

a? < By < (n+ 1)(12
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then the system (29) can be rewritten as:

2" = —a’a! + axb,
o = —a?xh + axl,
: (30)
oy = —a’w;,_y + az,
L 21 = ((n=1)a® = Boi)ay, — i=rg ()
If similar conditions to which presented in Case 1 hold with herein
D= {(X,X’,X”) X < X oo <2¢,]X" |00 < 2camax}
min
— ! " . / "
M = max{|g(X,X X)L (XX X € D},
then by Theorem 2.4, there exists w with wy < w < wy such that the system (30) has a solution that
X(0) = X(w)
So, for the equation (28), we would have:
2D (0) = 22 (W), (i=0,---,n—1). (31)

Now lf in addition, we have
1o " 2n—1 2n AN/} 2n—1 2n
g(x,—ac,x , —X ,---,—x( ),:U( ))——g(:n,x,x,x ,---,33( ),x( )),

then the equation (28) has a periodic solution of period 2w. For this, we can extend the obtained solution
x(t) with the boundary conditions (31) to [0, 2w] as follows:

x(t) (0<t<w),

z(t) =

x(2w —t) (w <t <2w).
This solution satisfies (28) and has continuous property ¢ = w with
20(0) = 20 (w), (i=0,---,2n).
Case 2. Let n be an even positive integer. We can transfer the equation (28) to the following system

o' = —a? ml + ozm2 + a:n3,

afy = —a’zh + ar) + azh,

‘TZJI+1 = ((n - 1)&2 ) n+1 + Zz 1Y %, #f()v

where the arguments of f(.) are as:

2j+1 J+2 !
{ Z zy Lys

2542 = (p2D)

Now if the function f is as:

n—1
flz,- ’x(2n)): Zﬂm(zzﬂ) +g(w,-- ’:L,(Zn—l))’

=0
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with 5;’s satisfying the following conditions:

2n—1
Ta2 < Bu1+a < (n+1)d?

v + 5 =0,

then the system (32) can be rewritten as:

o) = —a’z) + azh + axl,

" __ 2,./ / /
Ty = —a°Ty + T + a3,

Ty = ((n —1)a® - oz)xgﬂ_l — ﬁf()

If similar conditions to those presented in Case 1 hold and D and M as in Case 2, then the existence of a
w with wp < w < wy such that X(0) = X (w) is guaranteed. Furthermore if the equation (28) satisfies the
suitable parity conditions similar to dose of Case 2 in Theorem 2.4, then the existence of a periodic solution

for the equation is guaranteed. O
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