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Abstract

In this paper, we give some sufficient conditions for the existence of periodic solutions for some autonomous
nonlinear ordinary differential equations of order n. The proposed method is based on the use of Brouwer’s
degree and especially the homotopy invariant of the topological degree.
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1. Introduction

In the qualitative theory of differential equations the main problems are the study of their periodic
solutions, their existence, their numbers and their stability. It is interesting to note that the existence
of periodic solutions of nonlinear autonomous differential equations has not been extensively investigated.
The Poincare-Bendixon theorem [19], which is a powerful tool for the investigation of periodic solutions of
systems of second order differential equations, is not applicable for third and higher order systems. In what
follows, we use the idea of Brower’s degree theory (see, e.g. [10, 11, 13, 15, 16]) to prove the existence of
periodic solutions of higher order systems.

Email addresses: baayyaatt@gmail.com (Morteza Bayat), masadi.azu@gmail.com (Mehdi Asadi)

Received October 01, 2023; Accepted: December 04, 2023; Online: December 29, 2023.

Advances in the Theory of Nonlinear Analysis and its Applications 7 (2023) No. 5, 193–205. 
https://doi.org/10.17762/atnaa.v7.i5.335
Available online at https://atnaea.org/
Research Article



The existence of nontrivial periodic solution of autonomous nonlinear third, fourth and fifth order differential
equations of the forms

x′′′ + f(x, x′, x′′) = 0, f(x,−x′, x′′) = −f(x, x′, x′′),

x(4) + f(x, x′, x′′, x′′′) = 0, f(−x, x′,−x′′, x′′′) = −f(x, x′, x′′, x′′′), (1)

x(5) + f(x, x′, x′′, x′′′, x(4)) = 0, f(x,−x′, x′′,−x′′′, x(4)) = −f(x, x′, x′′, x′′′, x(4)), (2)

has been investigated in [4, 5, 17]. For periodic problems of ordinary differential equations of higher order,
other results are found in [1, 2, 3, 8, 9, 14].

Let U be an open and bounded set in Rn. For any y ∈ Rn, we put

Cr(U,Rn) =
{
f ∈ Cr(U,Rn) : djf ∈ C(U,Rn), 0 6 j 6 r

}
,

Dry(U,Rn) =
{
f ∈ Cr(U,Rn) : y /∈ f(∂U)

}
, Dy(U,Rn) = D0

y(U,Rn).

For f ∈ C1(U,Rn), the Jacobian of f in x ∈ U is Jf (x) = det
[ ∂fi
∂xj

(x)
]
1≤i,j≤n. We say y is a regular point

of f if Jf (x) 6= 0 for all x ∈ f−1(y). Now, we define the topological degree.

Definition 1.1. Suppose f ∈ D1
y(U,Rn) and y is a regular value of f . Define the degree of f at y relative

to U , as the integer

deg(f, U, y) =
∑

x∈f−1(y)

sgn
(
Jf (x)

)
. (3)

According to the Sard’s Lemma [15], the set of f−1(y) is finite. Also, the topological degree theory gives
us information on the existence, number and nature of solutions of the equation f(x) = y. According to the
Kronecker’s existence theorem [15], if deg(f, U, y) 6= 0 then f(x) = y has at least one solution in U .

Theorem 1.2 (Homotopy Invariance Property, [11]). If f, g ∈ Dy(U,Rn) and H(t) = (1 − t)f + tg ∈
Dy(U,Rn) for all t ∈ [0, 1], then

deg(f, U, y) = deg(g, U, y).

Theorem 1.3 (Rouché Property, [11]). Let f, g ∈ Dy(U,Rn) and

|f(x)− g(x)| < dist(y, f(∂U)) (x ∈ ∂U).

Then
deg(f, U, y) = deg(g, U, y).

For C = (c1, · · · , cn) ∈ Rn, we write |C|∞ = max
{
|ci| : i = 1, · · · , n

}
and let Ωc =

{
C ∈ Rn : |C|∞ < c

}
.

For an interval I and f ∈ C(I,Rn), the norm ‖.‖ is defined as

‖f‖ = max
v∈I
|f(v)|∞. (4)

If P is a matrix then ‖P‖ denote it’s usual norm.
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2. Notations and Preliminaries

In this section, we give some sufficient conditions for the existence of periodic solution of the systems of
the second and third order nonlinear autonomous differential equations in Rn.

Theorem 2.1 (Emamirad-Mehri, [12]). Consider the second order system

X ′′ + F (X,X ′) = 0, (5)

where X is a Rn-valued function of t in R and n is a positive integer and for F = (f1, · · · , fn)T , in which
the functions f1, · · · , fn are of the class C2 in a neighborhood of the origin in R2n. Consider c > 0, k ∈ (1, 2)
and a diagonal matrix A as:

A = diag(a1, · · · , an), ai > 0,

k ≤ amax

amin
<

2

k − 1
, amin = min

1≤i≤n
{ai}, amax = max

1≤i≤n
{ai}.

Define,

D =
{

(X,X ′) : |X|∞ ≤ 2c, |X ′|∞ ≤ 2camax

}
,

ω0 =
π

amin + amax
, ω1 = (k + 1)ω0.

Now, if δc > (k+1)M
a2min

, where

δ = min
{
| sin(aiωj)| : i = 1, · · · , n, j = 0, 1

}
,

M = max
{∣∣A2X − F (X,X ′)

∣∣
∞: (X,X ′) ∈ D

}
,

then there exists ω, with ω0 < ω < ω1 such that for some proper initial conditions, the system (5) has a
solution which satisfies the following boundary conditions:

X(0) = X(ω) = 0. (6)

Corollary 2.2 (Bayat-Khatami, [4]). Consider the fourth order differential equation (1). Assume that there
exist a, b, c > 0, and k ∈ (1, 2) such that

k +
1

k
<

a√
b
<
k − 1

2
+

2

k − 1
,

cδβ2 > M(k + 1),

where

δ = min

{
sin

(
απ

α+ β

)
, sin

(
βπ

α+ β

)
, sin

(
απ(k + 1)

α+ β

)
, sin

(
απ(k + 1)

α+ β

)}
,

M = max
{∣∣ax′′ + bx− f(x, x′, x′′, x′′′)

∣∣: (x, x′, x′′, x′′′) ∈ D
}
,

D =
{

(x, y, x′, y′) : |x| ≤ 2c, |y| ≤ 2c, |x′| ≤ 2cα, |y′| ≤ 2cα
}
,

α =

√
a+
√
a2 − 4b

2
, β =

√
a−
√
a2 − 4b

2
.

Then the equation (1) has a periodic solution.
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The following lemma will be used in the next discussions.

Lemma 2.3. Let
A = diag(a1, a2, · · · , an), ai > 0

be a positive diagonal matrix and amin = min{ai} and amax = max{ai}. If k ∈ (1, 2) and k ≤ amax
amin

< 2
k−1 ,

then

deg
(
cos(Aωj)C,Ωc, 0

)
= (−1)j (j = 0, 1), (7)

where

ω0 =
π

amin + amax
, ω1 = (k + 1)ω0. (8)

Proof. Using Definition 1.1, we have

deg
(
cos(Aωj)C,Ωc, 0

)
= sgn

( n∏
i=1

cos(aiωj)
)
. (9)

To prove (7), we have
(k − 1)π

k + 1
< aiω0 <

2π

k + 1
+
π

2
,

and
π < aiω1 < 2π.

Now, we generalize Theorem 2.1 for third order systems as follows:

Theorem 2.4. Consider the third order system

X ′′′ + F (X,X ′, X ′′) = 0, (10)

where X is a Rn-valued function of t in R and n is a positive integer and for F = (f1, · · · , fn)T , the
functions f1, · · · , fn are of class C2 in a neighborhood of the origin in R3n. Consider c > 0 and k ∈ (1, 2)
with a diagonal matrix A as:

A = diag(a1, · · · , an), ai > 0,

k ≤ amax

amin
<

2

k − 1
, amin = min

1≤i≤n
{ai}, amax = max

1≤i≤n
{ai}. (11)

Define,

D =
{

(X,X ′, X ′′) : |X|∞ ≤
2c

amin
, |X ′|∞ ≤ 2c, |X ′′|∞ ≤ 2camax

}
,

ω0 =
π

amin + amax
, ω1 = (k + 1)ω0.

Now, if we have

δca2min > πM(k + 1), (12)

where

δ = min
{
| cos(aiωj)| : i = 1, · · · , n, j = 0, 1

}
,

M = max
{∣∣A2X ′ − F (X,X ′, X ′′)

∣∣
∞: (X,X ′, X ′′) ∈ D

}
,
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then there exists ω with ω0 < ω < ω1 such that for a proper initial conditions, the system (10) has a solution
that satisfies the following boundary condition

X(0) = X(ω). (13)

Proof. Consider the following system: 
X ′′′ + F (X,X ′, X ′′) = 0,

X(0) = −A−1C,
X ′(0) = 0,

X ′′(0) = AC,

(14)

where |C|∞ < c and X is a Rn-valued function of t in R. Now, we consider the following integral equation:

X
(
t, C, λ

)
= −A−1 cos(At)C + λG

(
t,X,X ′, X ′′

)
, (15)

G
(
t,X,X ′, X ′′

)
= A−2

∫ t

0

(
cos
(
A(t− s)

)
−In

)[
A2X ′(s)− F

(
X(s), X ′(s), X ′′(s)

)]
ds.

One can easily verify that X
(
t, C, 1

)
is the solution of (14) with X

(
0, C, λ

)
= −A−1C and this solution is

not identically constant, since X ′′
(
0
)
6= 0. The X

(
t, C, 1

)
is the unique solution of (14) and the existence of

such a solution for small |t|, follows from the standard existence theorem. Taking |t| small enough, we can
obtain the following estimates:

|X(t)|∞ ≤
2c

amin
, |X ′(t)|∞ ≤ 2c, |X ′′(t)|∞ ≤ 2camax.

Now, using the continuity theorem, we can extend this solution for the whole interval I =
[
0, (k+1)π

2amin

]
, and

this solution will be continuous on the boundaries. Using (12), we have∥∥G(t,X,X ′, X ′′)
∥∥≤ 2tM

a2min

≤ πM(k + 1)

a3min

<
δc

amin
<

c

amin
,

and thus ∥∥X(t, C, 1)
∥∥≤ 2c

amin
,

∥∥X ′(t, C, 1)
∥∥≤ 2c,

∥∥X ′′(t, C, 1)
∥∥≤ 2camax.

In the following, we show that this solution satisfies (13) for some ω where ω0 < ω < ω1, or equivalently, we
show that the number ω where ω0 < ω < ω1 and the point C where |C|∞ = c exist such that X(ω,C, 1) = 0.
According to Lemma 2.3, we obtain

deg
(
X(ωj , C, 0),Ωc, 0

)
= (−1)j , (j = 0, 1). (16)

On the other hand w have∥∥∥X(ωj , C, 1)−X(ωj , C, 0)
∥∥∥=

∥∥∥G(ωj , X,X
′, X ′′)

∥∥∥< δc

amin
, (17)

and also ∥∥∥X(ωj , C, 0)
∥∥∥=

∣∣A−1 cos(Aωj)C
∣∣
∞= max

i=1,··· ,n

{∣∣cos(aiωj)
∣∣ |ci|
ai

}
≥ max

i=1,··· ,n

( |ci|
ai

)
min

i=1,··· ,n

∣∣cos(aiωj)
∣∣> δc

amin
. (18)

Thus by Theorem ?? and (16)-(18), it follows that

deg
(
X(ωj , C, 1),Ωc, 0

)
= (−1)j (j = 0, 1).

Now, by virtue of Theorem ?? it implies the existence of a number ω, ω0 < ω < ω1 and a point C such that
|C|∞ = c and X(ω,C, 1) = 0.
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Corollary 2.5 (Bayat-Khatami, [5]). Consider the fifth order differential equation (2). Assume that there
exists a, b, c > 0 and k ∈ (1, 2) such that

k +
1

k
<

a√
b
<
k − 1

2
+

2

k − 1
,

cδβ2 > (k + 1)Mπ,

where

δ = min

{
cos

(
απ

α+ β

)
, cos

(
βπ

α+ β

)
, cos

(
απ(k + 1)

α+ β

)
, cos

(
απ(k + 1)

α+ β

)}
,

M = max
{∣∣ax′′′ + bx′ − f(x, x′, x′′, x′′′, x(4))

∣∣: (x, x′, x′′, x′′′, x(4)) ∈ D
}
,

D =
{

(x, y, x′, y′, x′′, y′′) : |x| ≤ 2c

β
, |y| ≤ 2c

β
, |x′| ≤ 2c, |y′| ≤ 2c, |x′′| ≤ 2cα, |y′′| ≤ 2cα

}
,

α =

√
a+
√
a2 − 4b

2
, β =

√
a−
√
a2 − 4b

2
.

Then the equation (2) has a periodic solution.

Corollary 2.6. Let F be an odd function of class C2 in a neighborhood of the origin in Rn and let DF (0)
be the derivative of F at the origin. If there exists a diagonal positive matrix A with k ≤ amax

amin
< 2

k−1 for

k ∈ (1, 2), such that the norm of DF (0)− A2 is sufficiently small, then for some ω in (ω0, ω1) these exists
a 2ω-periodic solution for

X ′′′ + F (X ′) = 0.

Proof. According to Theorem 2.4, it is enough to show the smallness of the norm of matrix DF (0) − A2.
There are numbers ε > 0 and d > 0 such that for all |X ′|∞ < 2d, we have∣∣(DF (0)−A2)X ′

∣∣
∞ ≤

∣∣DF (0)−A2
∣∣
∞|X

′|∞ − ε,

≤ δa2max

(k + 1)π
|X ′|∞ − ε,

where δ = cos
(
π(k+1)amax

amax+amin

)
. From the differentiability of F at the origin it follows that for ε

2d > 0, there

exists α > 0 such that if |X ′|∞ < 2α, then∣∣F (X ′)−A2X ′
∣∣
∞≤

ε

2d
|X ′|∞ +

∣∣DF (0)X ′ −A2X ′
∣∣
∞.

Now for c = min{δ, d} and |X ′|∞ ≤ 2c,

M = sup
{∣∣F (X ′)−A2X ′

∣∣
∞: |X ′|∞ ≤ 2c

}
≤ δa2maxc

(k + 1)π
.

Remark 2.7. In Theorem 2.4, if A = aIn, then there is no such k that satisfies (11). For this purpose, we
extend system (14) on Rn+1 as follows:

X̃ ′′′ = −Ã2X̃ ′ + F̃
(
X̃, X̃ ′, X̃ ′′

)
, (19)
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where

X̃ =

[
X
y

]
, Ã2 =



−ε2
0

a2In 0
...
0

k2 0 · · · 0 0


F̃ =


F1 − εy2

F2
...
Fn
0

 , F =


F1

F2
...
Fn

 .

Using the transformation X̃ = PU , the matrix Λ = P−1Ã2P is a diagonal matrix whose diagonal elements
are eigenvalues of matrix Ã2. Thus, the new form of this system is:

Ũ ′′′ = −ΛU ′ + P−1F̃
(
PU,PU ′, PU ′′

)
. (20)

The diagonal elements of Λ consist of the eigenvalues of Ã2:

λ1 =
a2 + d

2
, λn+1 =

a2 − d
2

, λi = a2, (i = 2, · · · , n),

and d =
√
a4 − 4ε2k2. Now if 2εk < a2 < 4√

3
εk, then these eigenvalues λi are real and λmax

λmin
is less than 4.

Also, the P matrix is given as follows:

P =


p 0 q

0 rIn−1 0

pλn+1

ε2
0 − qλ1

ε2

 (p, q, r 6= 0).

Moreover, the inverse matrix of P is:

P−1 =


λ1
pa2

0 λn+1

qa2

0 In−1

r 0
λn+1

qa2
0 −ε

qa2

 .
Now, we have to show: ∥∥∥P−1F̃ (PU,PU ′, PU ′′)∥∥∥< λn+1

3
δ′c

where

δ′ = min
i=1,··· ,n+1

∣∣∣∣∣cos

(
(k + 1)π

√
λi

a+
√
λn+1

)∣∣∣∣∣
D̃ =

{(
X̃, X̃ ′, X̃ ′′

)
: |X̃|∞ ≤

2c

a
, |X̃ ′|∞ ≤ 2c, |X̃ ′′|∞ ≤ 2ca

}
.

On the other hand, we have
∥∥∥F (X,X ′, X ′′)∥∥∥= M < a2c

3 . We can choose ε2 small enough, such that

∥∥∥F̃ (X̃, X̃ ′, X̃ ′′)∥∥∥= M̃ <
a2c

3
.

Now, we have ∥∥∥P−1F̃ (PU,PU ′, PU ′′)∥∥∥< ‖P−1‖M̃ < ‖P−1‖a
2c

3
,

which by choosing
∥∥P−1∥∥< δ′

4 , for p, q, r being sufficiently large, the proof is complete.
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3. Main Results

In this section, we use Theorem 2.1 and Theorem 2.4 to show the existence of periodic solutions of
certain higher order equations.

Theorem 3.1. Consider the following equation

x(2n) + f
(
x, · · · , x(2n−1)

)
= 0, (21)

where f is of class C2 in a neighborhood of the origin in R2n. Suppose that there exist ai, i = 0, · · · , n − 1
and a closed domain D containing the origin of R2n, such that

M :=

{∣∣∣n−1∑
i=0

aix
(2i) − f

(
x, x′, · · · , x(2n−1)

)∣∣∣: (x, x′, · · · , x(2n−1))∈ D} ,
is sufficiently small. Also let

f
(
−x, x′,−x′′, · · · ,−x(2i), · · · , x(2n−1)

)
= −f

(
x, x′, x′′, · · · , x(2i), · · · , x(2n−1)

)
,

then the equation (21) has a periodic solution.

Proof. We consider the following two cases.
Case 1. Let n be an odd positive integer. The equation (21) can be rewritten to the following system

x′′1 = −a2x1 + αx2,
x′′2 = −a2x2 + αx3,
...
x′′n−1 = −a2xn−1 + αxn,

x′′n = (n− 1)a2xn +
∑n−1

i=1 vixi −
1

αn−1 f(.),

(22)

where

vi =

(
n

i− 1

)(−1

α

)n−i
a2(n−i+1),

with the arguments of f(.) are as:  x(2j) =
∑j+1

i=1 wi−1,jxiα
i−1,

x(2j+1) =
(
x(2j)

)′
where

wij =

 (−1)j−i
(
j
i

)
a2(j−i) (i ≤ j),

0 (i > j).

Now, if the function f is as:

f
(
x, x′, · · · , x(2n−1)

)
=

n−1∑
i=0

βix
(2i) + g

(
x, x′, · · · , x(2n−1)

)
,

with βi’s satisfying the following conditions:

2n− 1

2
a2 < βn−1 < (n+ 1)a2,

n−1∑
j=i

wi,jβj + (−1)n−i
(
n

i

)
a2(n−i) = 0, (i = 0, · · · , n− 2),
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then the system (22) can be rewritten as:

x′′1 = −a2x1 + αx2,
x′′2 = −a2x2 + αx3,
...
x′′n−1 = −a2xn−1 + αxn,

x′′n =
(

(n− 1)a2 − βn−1
)
xn − 1

αn−1 g(.).

(23)

Consider c > 0, a > 0 and k ∈ (1, 2) and we define

X = (x1, · · · , xn)T , A = diag
(
a, · · · , a,

√
βn−1 − (n− 1)a2

)
,

amin = min
{
a,
√
βn−1 − (n− 1)a2

}
amax = max

{
a,
√
βn−1 − (n− 1)a2

}
k ≤ amax

amin
<

2

k − 1
(24)

ω0 =
π

amin + amax
, ω1 = (k + 1)ω0

D =
{

(X,X ′) : |X|∞ ≤ 2c, |X ′|∞ ≤ 2camax

}
with {

a2min > 2(k + 1)δα,

2δαnc > (k + 1)M,

where

M = max
{∣∣g(X,X ′)

∣∣
∞: (X,X ′) ∈ D

}
δ = min

{
| sin(aiω0)|, | sin(aiω1)|

}
, ai = amin, amax.

With α small enough, if M is sufficiently small, then by Theorem 2.1, there exists ω with ω0 < ω < ω1 such
that the system (23) has a solution that

X(0) = X(ω) = 0.

So, for equation (21), we would have

x(2i)(0) = x(2i)(ω) = 0, (i = 0, · · · , n− 1). (25)

Now if in addition, we have

g
(
−x, x′,−x′′, x′′′, · · · ,−x(2n−2), x(2n−1)

)
= −g

(
x, x′, x′′, x′′′, · · · , x(2n−2), x(2n−1)

)
,

then the system of equation (23) has a periodic solution of period 2ω. For this, we can extend the obtained
x(t) with boundary condition (25) to [0, 2ω] as follows:

z(t) =


x(t) (0 ≤ t ≤ ω),

−x(2ω − t) (ω ≤ t ≤ 2ω).
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This solution satisfies (21) and has continuous property at t = ω with

z(i)(0) = z(i)(ω), (i = 0, · · · , 2n− 1).

Case 2. Let n be an even positive integer. The equation (21) can be rewritten to the following system
x′′1 = −a2x1 + αx2 + αx3,
x′′2 = −a2x2 + αx1 + αx3,
...
x′′n+1 =

(
(n− 1)a2 − α

)
xn+1 +

∑n
i=1 v

∗
i xi − 1

αn−1 f(.),

(26)

where

v∗i =

{
vi (i ≤ 2),

vi−1 + vi (i > 2),

and the arguments of f(.) are as: {
x(2j) =

∑j+2
i=1 w

∗
i,jxi,

x(2j+1) =
(
x(2j)

)′
,

where

w∗i,j =


wi−1,j (i ≤ 2),

wi−2,j + wi−1,j (i > 2).

Now, if the function f is as:

f
(
x, · · · , x(2n−1)

)
=

n−1∑
i=0

βix
(2i) + g

(
x, · · · , x(2n−1)

)
,

with βi’s satisfying the following conditions:

2n− 1

2
a2 < βn−1 + α < (n+ 1)a2,

v∗i + S∗i = 0,

where

S∗i =
n−1∑
j=k−2

βjwi,j ,

then the system (26) can be rewritten as:
x′′1 = −a2x1 + αx2 + αx3,
x′′2 = −a2x2 + αx1 + αx3,

...
x′′n+1 =

(
(n− 1)a2 − α− βn−1

)
xn+1 − 1

αn−1 g(.).

(27)

Defining 

X = (x1, · · · , xn, xn+1)
T

amin = min
{
a,
√
βn−1 − (n− 1)a2 + α

}
amax = max

{
a,
√
βn−1 − (n− 1)a2 + α

}
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If we have {
a2min > 4(k + 1)δα,

2δαnc > (k + 1)M,

then by Theorem 2.1, there exists ω, ω0 < ω < ω1 such that the system (26) has a solution that

X(0) = X(ω) = 0.

And similar of Case 1, if the parity conditions hold then the equation (21) would has a periodic solution.

Theorem 3.2. Consider the following equation

x(2n+1) + f
(
x, · · · , x(2n)

)
= 0, (28)

where f is of class C2 in a neighborhood of the origin in R2n+1. Suppose that there exist a, α and a closed
domain containing the origin of R2n+1, such that

M := max
{∣∣∣n−1∑

i=0

aix
(2i+1) − f

(
x, x′, · · · , x(2n)

)∣∣∣: (x, x′, · · · , x(2n))∈ D},
is sufficiently small. Also let

f
(
x,−x′, x′′, · · · ,−x(2i+1), · · · , x(2n)

)
= −f

(
x, x′, x′′, · · · , x(2i), · · · , x(2n)

)
,

then equation (28) has a periodic solution.

Proof. We consider the following two cases.
Case 1. Let n be an odd positive integer. We can transfer this equation to the following third order system:

x′′′1 = −a2x′1 + αx′2,
x′′′2 = −a2x′2 + αx′3,
...
x′′′n−1 = −a2x′n−1 + αx′n,

x′′′n = (n− 1)a2x′n −
∑n−1

i=1 vix
′
i − 1

αn−1 f(.),

(29)

where the arguments of the function f(.) are as:{
x(2j+1) =

∑j+1
i=1 wi−1,jx

′
i, (j = 0, · · · , n− 1)

x(2j+2) =
(
x(2j+1)

)′
.

Now if the function f is as:

f
(
x, · · · , x(2n)

)
=

n−1∑
i=0

βix
(2i+1) + g

(
x, · · · , x(2n)

)
,

with βi’s satisfying the following conditions:

2n− 1

2
a2 < βn−1 < (n+ 1)a2,

n−1∑
j=i

α−iwi−1,jβj + (−1)n−i
(
n

i

)
a2(n−i) = 0, (i = 1, · · · , n− 2),
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then the system (29) can be rewritten as:

x′′′1 = −a2x′1 + αx′2,
x′′′2 = −a2x′2 + αx′3,
...
x′′′n−1 = −a2x′n−1 + αx′n,

x′′′n+1 =
(
(n− 1)a2 − βn−1

)
x′n − 1

αn−1 g(.),

(30)

If similar conditions to which presented in Case 1 hold with herein

D =

{
(X,X ′, X ′′) : |X|∞ ≤

2c

amin
, |X ′|∞ ≤ 2c, |X ′′|∞ ≤ 2camax

}
M = max

{∣∣g(X,X ′, X ′′)
∣∣
∞: (X,X ′, X ′′) ∈ D

}
,

then by Theorem 2.4, there exists ω with ω0 < ω < ω1 such that the system (30) has a solution that

X(0) = X(ω).

So, for the equation (28), we would have:

x(2i+1)(0) = x(2i+1)(ω), (i = 0, · · · , n− 1). (31)

Now if in addition, we have

g
(
x,−x′, x′′,−x′′′, · · · ,−x(2n−1), x(2n)

)
= −g

(
x, x′, x′′, x′′′, · · · , x(2n−1), x(2n)

)
,

then the equation (28) has a periodic solution of period 2ω. For this, we can extend the obtained solution
x(t) with the boundary conditions (31) to [0, 2ω] as follows:

z(t) =


x(t) (0 ≤ t ≤ ω),

x(2ω − t) (ω ≤ t ≤ 2ω).

This solution satisfies (28) and has continuous property t = ω with

z(i)(0) = z(i)(ω), (i = 0, · · · , 2n).

Case 2. Let n be an even positive integer. We can transfer the equation (28) to the following system
x′′′1 = −a2x′1 + αx′2 + αx′3,
x′′′2 = −a2x′2 + αx′1 + αx′3,
...
x′′′n+1 =

(
(n− 1)a2 − α

)
x′n+1 +

∑n
i=1 v

∗
i x
′
i − 1

αn−1 f(.),

(32)

where the arguments of f(.) are as: {
x(2j+1) =

∑j+2
i=1 w

∗
i,jx
′
i,

x(2j+2) =
(
x(2j+1)

)′
.

Now if the function f is as:

f
(
x, · · · , x(2n)

)
=

n−1∑
i=0

βix
(2i+1) + g

(
x, · · · , x(2n−1)

)
,

M. Bayat et. al., Adv. Theory Nonlinear Anal. Appl. 7 (2023), 193–205. 204



with βi’s satisfying the following conditions:

2n− 1

2
a2 < βn−1 + α < (n+ 1)a2,

v∗i + S∗i = 0,

then the system (32) can be rewritten as:
x′′′1 = −a2x′1 + αx′2 + αx′3,
x′′′2 = −a2x′2 + αx′1 + αx′3,
...
x′′′n+1 =

(
(n− 1)a2 − α

)
x′n+1 − 1

αn−1 f(.).

If similar conditions to those presented in Case 1 hold and D and M as in Case 2, then the existence of a
ω with ω0 < ω < ω1 such that X(0) = X(ω) is guaranteed. Furthermore if the equation (28) satisfies the
suitable parity conditions similar to dose of Case 2 in Theorem 2.4, then the existence of a periodic solution
for the equation is guaranteed.
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