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Abstract

The paper discusses the inverse problem of determining an unknown source term in a fractional
elliptic equation in bounded domain. In order to solve the considered problem, a fractional
Tikhonov is used. Applying this method, having a regularized solution is constructed. An a
priori and a posteriori error estimates are obtained, and the the terminal data has a random
data is considered.
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1. Introduction

Fractional models have recently become a subject of interest for many scientists because of
their important applications in various fields, [1l, 2 B, [4] 5] 6, [7, [8, @, 10, 1T, T2]. In this work,
we consider a source identification problem in a fractional elliptic partial differential equation
as follows

DIDPu(z) — Au(z) = F,z > 0, (1.1)
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where 0 < 8 < 1 and Df is the fractional Liouville-Caputo derivative of order g for differentiable
function, defined by [13].

Dlu(z,x) = 1“(11—5) /Oz(z — 5) Pug(s,z)ds, 0<f<1. (1.2)

We want to recover the unknown function f from the knowledge of the interior information
u(L)=peH,0<L<o0. (1.3)

Here, A : D(A) € H — H is a positive, self-adjoint operator with compact resolvent, and
H denotes a separable Hilbert space endowed with the inner product (.,.) and the norm ||.|.
Let (A, en) be the eigenvalues and corresponding eigenfunctions of A, such that {\,},>1 is an
increasing unbounded sequence and {e, },>1 forms an orthonormal basis in #. The additional
data p is observed at the position z = £, which may contain measurement errors. The famous
difficulty with inverse problems is that they are often ill-posed. Thus, Therefore, it is necessary
to correct this problem and provide error estimates.

In [14], the elliptic fractional operator (DZ’B DY — A) is subjected to an inverse problem
in an infinite domain, the authors proposed a preconditioning version of the Kozlov-Maz’ya
iteration method for recovering missing data under a complementary condition. In the same
context, several publications have been published on ill-posed inverse fractional problems, using
a variety of regularization methods to overcome the ill-posedness, see in [17, [18]. In [19, 20],
they obtained the regularized sought solution by using quasi-boundary value method, where in
[[21]] they implemented the quasireversibility method, in [22] the authors proposed the Fourier
truncation method, also, in [23], a non-stationary iterative Tikhonov regularisation method
coupled with a finite dimensional approximation is applied to recover a stable source term.

In this work, we provide a fractional Tikhonov method to solve this inverse source problem
for the fractional elliptic diffusion equation in a general bounded domain. This method was
first proposed by Li and Xiong [16] when they considered an inverse heat conduction problem.
Afterthat, this method to solve a Cauchy problem of the Helmholtz equation.

In this paper, since the a-priori bound of the exact solution is usually hard for one to
estimate, the a-priori parameter choice rule is unavailable. In this paper, we will give the
convergence rates under the a-priori parameter choice rule and the a-posteriori parameter choice
rule. We want to recover the source function F(x) from indirect observable data u(L) = p at
the final moment z = £. The observable data p(x) contain measurement errors and satisfies

l* = pllyy < e (1.4)

unless otherwise specified, in this paper, || - || is the L? norm and € > 0 is the noise level. Next,
see in [15], we have

p(-rk) :P(ﬁk)+5k, k= 17 y 1.
where €,k = 1,--- ,n are unknown independent random errors because the function p(x) in

practical applications is the result of experimental observations and cannot be viewed without
errors. As a matter of fact, these mistakes can emerge out of many sources like the estimating

instrument or the climate. From now on, we put x; = WQIZ—ZI, with £k = 1,--- ,n. We have a
data set D = (p(z1), p(22), ..., p(xy)), which is the measure of (p(z1), p(z2), ..., p(zy)), here
D satisfies

,B(xk) = p(xk) + o€k, (1.5)
where, €, kK = 1,--- ,n are unknown independent noises. Therefore, €, and o), are unknown

positive constants that are constrained by the positive constant V4, so that 0 < o; and Viax,
respectively. The noises € are independent of one another.
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The outline of the paper is as follows. In Section 2, we recall the necessary tools to treat
the considered problem. The mild solution is shown in Section 3. In Section 4, we get the
non-well posed of problem , establishing the convergence estimates with a priori and a
posteriori regularization parameter choice rule, by using a fractional Tikhonov method in Section
5. Finally, in section 6, showing the convergent rate under case the function p has a random
data.

2. Preliminary

It is well known that the classical Mittag-Leffler function is one of the basic tools in fractional
calculus, denotes Ejg 1(-) and is defined by

e} n

z
E/B}l(Z) = nz:;] m,,@ > O,Z e C. (26)

Theorem 2.1. For every 8 € (0,1), we have

1 1

T30 pe = P S ot 20 27)

From (2.7), we deduce that

1
1+T(1 = B)VALP

1

_ B
< Egi(—VLP) < RS CTERIE s we S

3. The mild solution

For 0 < B < 1, let us consider the following well-posed system equations

DIDIu(z) — Au(z) = F, z € (0,00), (3.9)
u(0) = 0. '
Theorem 3.1. Let F € H, then the problem (1.1)) admits a unique generalized solution
wz) = —(I — Eg1(— 2"VA)AF = —Kg1(2)F
+oo
1—Eg1(— VA 2P
-y U= Bl =vhe ) 2 v, (3.10)
Ak
k=1
Let z = L in (3.10), we obtain
w(l) = —(I - Eg1(— LVA))AF = —Kg1(L)F = p. (3.11)

Ks.1(L) is a self-adjoint compact linear operator and sup,sq ||Ks1(2)|| < A1 Forp e H, the
space H' is defined by

W= {p e H: || Aplln < oo}. (3.12)

The operator equation ([3.11)) admits a unique solution if and only if g € H'.
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4. Ill-posedness of the inverse problem (1.1

To determine the unknown function F, we just need to solve The operator equation (3.11),
then we have the following

F=-K; L)p=—A(I ~ Es1(— LVA) 'p

+o0o
= M e )e
_; — (Eg,l(—ﬁﬁx/ﬁ))@’ o) s (4.13)

We can see from (4.13)) that the terms
we get

(1-Epa ()fcﬁ o)) are the instability causes. From (12.8]),

_1
A 2C1(B) < Ega(— L9V k) < Ca(B), (4.14)
which implies that

1
1—-Cao(B) <1—FEga(— L) <1-Ci(B)N, 2. (4.15)
and so
Ak Ak Ak
A < < < : (4.16)
LA L Bea(=L0VA) T 1-Ca(B)
and therefore
Ae < Ak <M asko oo (4.17)
- B (- V) T 1-Ga(B) ’ ’
Theorem 4.1. Let the following condition holds
+o00o
1FN20 = S NI NF, e)|* < B0 >0, (4.18)
k=1
then
a0
1Fll20) < CoET 1ol 50 (4.19)
6
where Cg = (1 — C2(B)) 7.
Proof. See proof in [13]. O

5. Fractional Tikhonov Regularization method

In this section, we propose a fractional Tikhonov regularization method to solve the ill-posed
problem and prove convergence estimate under the a-priori regularization parameter choice
rule. The solutions of fractional Tikhonov regularization method with noisy data and exact data
are given by

+o00 VC 1(£)‘2a—1 1
Fion(@)=>» — o S (p, enyen(z), = <a<l, (5.20)
o) =2 K1 (£)[* + 5(e) 2
and
+o0o ‘K: 1(‘6)‘20471 1
Fiyeon(z) = — Py - prepyep(x), - <a<l, (5.21)
)= o 1 Y

respectively, where y(e) > 0 plays the role of regularization parameter and « is called the
fractional parameter.

209
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o o= %, it is the quasi-boundary value method.

e o =1, it is the classic Tikhonov method.
e However, for % < a < 1, the fractional Tikhonov method looks like between the quasi-
boundary value method and the classic Tikhonov method.
Lemma 5.1. [16] For constants r > A1 and % < a <1, we have

- < Ai(a,C3) ()] 3, (5.22)

gl(T‘)IW_

where Ay = Ai(a,Cg) > 0 are independent on a, s.

Lemma 5.2. [16] For the constants r > A1 > 0 and % < a<1, we have

2a—0 4% 0 9

Go(r) = I < g B < (5.23)

C3* + [v(e)]r As[v(e)], 0> 2a,

where Ay = Az(a,0,Cg) > 0, A3 = A3 (a, 0, A1) > 0 are independent on r.
Lemma 5.3. [16] For constants 1 > A1 > 0 and 3 < o < 1, we have
20—1-0 L=
o 200 — 1
Ga(r) — ;ya(e)r < Agly(e)]2a, 0<0<2a—1, (5.24)
™ =\ Ah(), 02201,

where cq = c4(,0,Cp) >0, A5 = As (a,0,11,C3) > 0.
Theorem 5.1. Suppose the a-priori condition (4.18) and the noise assumption (1.4]) hold, then

2a
1

e If0 <0< 2a andy(e) = (§)°", we have

6

e — Fll, ts of order eo+1. (5.25)
[v(€)] 2

2a

o If0>2a and v(e) = (5) >, we have
I ()] — F||2 is of order €2t (5.26)

Proof. We know that
1760 = Fll < 1501 = Frrenlla + 17 = Freanlly = 7o + Ze. (5.27)
For k > 1 and a > 0, we have Ay > A > 1. Thus
1—Egi(—LPVM) >1—Egi(— LV ) =C. (5.28)
Estimate to Z;, by Lemma [5.1] and we have
S Ko

D

= s (L) + (o)

T = || Fyo1 = Frveanlls =

(p° = p, e )en(x)
2

200—1
< esup ‘Kﬁ’l(fi‘
keN [Kp1 (L) + [v(e)]
< esup al: < Are[y(e)] 2. (5.29)

keN C3% + [v(e)] A3
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Next, estimate of Zy, by (5.2)), it yields

I = Hf Fryonll

Hz< |IC51 \ <p, k) — ‘1(£>}<p,ek>>ek(l‘)H2

1K1 (L
:H+°° v(e)A;G Ak<p,ek> (g
2 keN }/cﬁl(g)yz"‘

ex(z)|| < Esup
Ko (L) + (e "Cg )| H
20—0 0
< Esup V(N = < A2E[y(e)]2a, 0< 6 < 20,
keN C + [v(e)] A} AsEv(e), 0> 20

From estimation of Z; and Zy, we obtain

1

0
A E 20, 0<6<2aq,
H‘F[e'y(e)] — ‘FHQ < Alf[fy(g)}fﬂ + { 2 [7(6)]2 «

AsE[y(e)], 0 > 2a. (5:30)

Choose the regularization parameter [y(e)] by

2c
) 0< 6 < 20,

v(e) = (E)A sUse (5.31)
(£), 6> 20

Then

(A1 + Ao) P BT, 0< 6 < 2a,

[ = Flls < {(A1 Ay BT, 05 20, (5.32)

The proof is completed. O]

5.1. The a-posteriori parameter choice rule

The most general a-posteriori rule is the Morozov’s discrepancy principle. Here, the Moro-
zov’s discrepancy principle is used to determine the regularization parameter ~y(e). Using the
discrepancy principle in the following form:

H [Ks1(0)]*
KCs.1 (L) + [1(e)]

("=, er) - (5.33)

where % < «a < 1,7 > 1 are user-supplied constants which are independent on €,y > 0 is the
regularization parameter.

K1 (L)

Lemma 5.4. L6t9 = Hm<p —p €k> 2,

then the following conclusions hold:

e O(v) is a continuous function;

o lim, ,» O(y)

e O(v) is a strictly increasing function over (0,00).
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Proof. The conclusions are straightforward if we note that

(5 [(©)] e )
o) = (X (e r ) 1 F) (539
O

Lemma 5.5. If [y(e)] is the solution of Eq. (5.34), we see that

1 1
2 o+ /Y o741
(A4> () , 0<6<2a—1,
1 T—1 €

[v(e)] 2 < 1 ! (5.35)
A2 \ 2« (E\ 2a
(751> <6> ., 0>2a—1.
Proof. From , we obtain
“+oo
= ()] ‘e )er(x 5.36
Hk:l Ko + bl )l 30
+00 +oo
[v(e)] ¢ [v(e)]
< —p,eL)ep(x + , ek)eplT
IE o rea @l e e el
+0oo
[v(e)] —0,0
<e+ K1 (L)AL " AL(F, e ) er(x 5.37
1= Ko@) + e AP ) )l 30
SN ) R T B o C5) S
< 6+Ek€§ (%ﬁya . h(e)])\n < +Ek€g Cgo‘ INEVE (5.38)
According to Lemma [5.3] we have
Te<e—l—E{AZI[#Y(G)}Q;;17 0<b<2a-1, (5.39)
h As[v(e)]; 0>2a—1.
So
A\ (B o
o < 4 ()T <o <t -
()™ (B)*, 6z2a-1.
O

Theorem 5.2. Suppose the a-priori condition (4.18)) and the noise assumption (1.4)) hold, then,

o I[f0<0<2a—1, we have

1 0
. Ayg 7T T+ 1) 0+ 16
H]:[’Y(f)] B }—Hz = (Al <7’ - 1> + ( Cs ) ) Ertert. (5.41)

o If0>2a—1, we have

1

1
¢ As 1 2@ r+1\'" = 9018 TR
H}_Me)] - .7'—H2 < <<T — 1> + < Cs ) Al Fzae ™ 2a, (5.42)

212
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Proof. By the triangle inequality, we know

HF[G’Y(€H — f”2 < Hf[e,y(e)] — ‘F[’Y(E)] ‘2 + H}_ — ./Th,(e)} ‘2 =13+ 1. (5.43)
e For 0 < 6 < 20 — 1, estimate of Z3, by Lemma [5.3] we have
1
€ _L Ay o+ 1 6
Ty = [ Fh — Flly S Ay 28 < Ay (=1 ) Bovtert. (5.44)

Now we estimate 74, we can deduce that

+o0
Z [’Y(G)] <f, 6k>€k(.%')

Iy =||F = Franll =
1=~ Fueal, & Ko (0 + (o) )
_ 400 [’y(f)HlC,B,l(E)‘ <.7'—, ek> ek(x)
=K1 (0] + ()] s ()] 7,
22 pe)|Ksa(0) i
< . F,ep)ep(x
2 e + o] ) )
+oo [’Y(G)HKﬂ,l(ﬁ)‘ <.7:, ek> ek($) o+1
= a1 (O + )] [Kan (o),
) ppm— L A |
=1 | Ks1 ()] + [v(e)] 2
—+oc0o ﬁ
()] Foew) ol 5.45
) ; |7C,8,1(£)‘2a+[’7<6)] "%,1(5)’9 (@) 9 ( )
From , we know
- [v(e)] Y
Iy < (’nzl \Kg,l(ﬁ)\m—l— <P o k> k() )
= b, GSYERY "
+ , €k )eplT — er)e
2 |Kﬁ’1(£)‘2a+h(e)]<0 k) en () 2) ;(%) (f, er)er(x) 2
et _ (1) gt
<(e+7€)7Cy " E ( e ) E (5.46)

Combining (5.44)-(5.46)), we obtain

1 0
¢ Ay N\ o+ THINET) 1 e
|7 =7, = (““1 <T_1> *( Cs ) )E €. (5.47)

e For 6 > 2a — 1, estimate of 73, and Lemma, we have

T—1

1 A 3a 1 2a-—
Ty = | Fr O = Frienl, < Arely(e)) 2 s( s ) B (5.48)
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Estimate of Zy, by Lemma we know that

(el
oo (= A T)? + [1()]

Iy =||F = Frealll, = | § T°E (Fre)enl)

:‘ +o0 [ﬂy(e)]]Cg,l(ﬁ) <.F, €k> ek(x)H
= K1 (L))* + (o)) [Kaa (L) 2
_ ‘ZOO GV PP O ST P X B
& 1K @ + o) ) = a1 (O + ()] [Ksa ()] |,
+oo

[v(€)] [v(e)] <.7:, ek> =
= ) €k )€ —er(T .
< ; !’Ca,l(£>\2“+h<e)]<p i H HZ Kaa (O + ()] [Kaa (0 <,

(5.49)

This leads to

al —p% ep)er(T
(”Z| rEar (T

S () \ ) .
Mol ) HZ< k) NeIMF ex)en()
< (et re)maee ()X Ea = (Tf;ZBl)l_Q A20=10 Fro 1= g (5.50)

L _1
176 =l < ( <T{51> T (Tg;l)l Ap) Bl (5:51)

This completes the proof. O

6. Discrete random noise

2k —1
Lemma 6.1. Let p = 1,....n— 1, and ¢ = 1,2,..., with x, = =« 5 and ep(xy) =
n
2
\/>sin(pxk), then we have
T
1
—, q—p=2In orq+p=2ln({ even ),
1 n m
- 1
nzep k) eq () —=, q—p=2ln orq+p=20nl odd ), (6.52)
k=1 ™
0, otherwise.

Ifq=1,2,....n—1, then

p=4q

= 1 Z”: 0, p # 2n,
Spa = T cand — % e(a) = 2 (6.53)
0, p#gq, "= (—1)5\/;, p = 2n.
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Lemma 6.2. (See [15]) Let k,m € N such that 1 <k <m —1, and p € C[0,n|. Then we have

o0

(P, ex) ZP w) e (T) (=1 ({p, ex+oem) + (pe—prom)), 1<k<m—1, (6.54)
=1

Lemma 6.3. Let 0 < My < m, My, € N, assume that p is as in Lemma then the source
function F is given by

Mt'r

Fm,Mtr(x):Zl_Eﬁl Lﬁk < prp ek J:p

k=1

- Z(_l)e( (P extaem) + (P, e—k+20m) )) ex(z)

00 —k2

t 2 1T E o o) (6:39)

)
X

7. The main results

Theorem 7.1. Let € > 0 and e ~ N(0,1) be independent normal random variables with

p=1,---,n (as mentioned above), then a regularized function J:’-:mM” for F can be computed
as follows

_ Mt'r k‘ T m

Pt (1) =3 (=5 )m;p ) en(y) ex (). (7.56)

My, is reqularization parameters, it gives

7 ~o wang (2, o |FR)
EHFm,Mtr - 'FH2 < \/§(Mtr) E + W( Vmax 144 m4 . (757)
. M2,
Let My, such that 0 < My < m and limy, ol 0
T : M, -
IEH]:m’M" —]-'H2 is of order - s (M )77 5. (7.58)

1
Remark 7.1. By choosing M. = m?2+e, then we have

E||Fmpt, — F|, is of order m” 7, (7.59)
Proof. Tt is easy to see that
1— Eg1(—Lk)\2 I
o ey = (L EERY? 7, gy < IR (7.60)
Using ([7.56|), we obtain
Fon () = F ()
Mt'r I{;2 o0
= 2 (1 "B (—LPR) ) ( ZUkaek ) + 21 < P €k+20m) + (P €—k+20m) )) ex(z)
_ . 61
Z <1—E/371(—£'Bk)) <p7 €k> ek(x) (76 )

215
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Fom ([7.61)), thank to Lemma we have

HﬁvatT - 'FH;

M 2 [e%S) 9

k
- ; <1 “F (L) ) ( ZUkEkek x) + ; ( 0y €kr20m) + (P €—kt-20m) >>
2 2
2

+ Z (1 _ E,B ﬁﬁk)> ’ (p, ex) } : (7.62)

k= Mt7+1

The fact that E (ej¢;) = 0; (j # 1), and Ee; =0;5 = 1,2,...,n. One has

EHJ%n,M” - fH2LZ(Q)

00 k‘2 9

=2 ) (1—E51(—£5k)) (e el

k=M;r+1 ’

My, £2 00 2
+ 42 (1 _ Eﬁ ( Eﬂk ) ( ZU]%Eﬁk + <Z( ) ((p, 6k+2@m> + <,0, €—k+26m> >> )

(=1
< j1 + Jo. (7.63)
Of course i; = 7;2, we obtain

. 17l [~ 1 - 1 m? || 7l
20 vz + Ao vl £ S5 1D G X e | ST e

(=1
(7.64)
For k > 1, 1 = k*° k27 estimate of J;
D S e L T D
1 1— Eﬁ 1(—£’Bk) y ) ) .
k=Mpy+1 ’ h=Mir+1
this leads to
T2 < (M) B2, (7.66)
Next, estimate of Jo
My 9
2 k ™ [|F ]2
<Y (o) (Bt REE) . e
Since o < Viax, it gives
My 4 2 4 2
4k T T H]:H
R (v s 2 L7
2 ; (1— By, (—LP))* \n? 144 mA
AM;, LRI HF\\;)
r — — 7.68
(1 —Eﬁ,l(_m)f (m2 max T T (7.68)
Combining , , and , we obtain
~ - 8Mj; m? |17
E||Fonar, — Fll < 2(My) 7 E? + - ( max + T 2) 7.69
H My H2 ( t) (1_E,B,1( ﬁﬁ)) 2 144 mA* ( )

This completes the proof. ]
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