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Abstract

This paper establishes certain new fixed point results for a class of contractions known as admissible hybrid
(0-¢)-contraction within the context of rectangular metric space. The main contribution of this work is
a straightforward unification of the notions of admissible mappings, 6-contractions, and the contraction
mapping principle. As a result, several corollaries are inferred from the primary findings given here, some
of which comprise some previously disclosed concepts. An application to one of the obtained results is the
proposal of new criteria for the existence and uniqueness of a solution to a mixed nonlinear fixed point
problem, using Volterra-Fredholm integrals. Nontrivial analytical and numerical examples are given and
compared with the specific articles supporting this study in order to elucidate the underlying theoretical
ideas.
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1. Introduction

Differential equations, game theory, dynamical systems, statistical models, and real-world issues are a
few examples of mathematical models. The presence of a solution for these concerns has been investigated
in a number of domains of mathematics, for example, differential equations, integral equations, functional
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analysis, etc. One of these techniques for solving these issues is the fixed point (FP) approach. As a result,
this approach is widely used in computer science, physics, biology, chemistry, and economics in addition to
mathematics.

A widely used method for solving nonlinear analytic problems is the Banach contraction concept. This
idea first surfaced in Banach’s thesis [5], where it was applied to demonstrate the uniqueness and existence
of integral equation solutions. It said as follows: A mapping T on a metric space (MS) (T, ) is called a
Banach contraction if there exists r € (0, 1) such that for all ¢, w € Z,

o(Ts, Tw) < rols, @). (1)

Notice that the contractive condition (1) is fulfilled for all ¢,zo € = which forces the mapping T to be
continuous, while it is not applicable in case of discontinuity. In view of the applicability of contraction
principle, forcing the concerned mapping to be continuous remains one of its drawbacks. Many authors
attempted to overcome this drawbacks, see ([32, 20]).

Branciari [7] in 2000 brought up the concept of generalized metric space (GMS), where the triangle
inequality is replaced by the inequality o(s,w) < o(s,u) + o(u,v) + o(v, w) for all pairwise distinct points
¢, w,u,v € Z. Since then, various FP results have been established on such spaces. Kirk and Shahzad
[18] said a ‘GMS’ is a semimetric space which does not satisfy the triangle inequality, but satisfies a weaker
assumption. Samet [25] also talked about exposing incorrect property of the GMS as brought in by Branciari.
For other discussions, see ([3, 27]), and the references therein.

There has been an explosion in the number of articles in metric FP theory over the previous few decades.
This reality compels researchers to devise a suitable method for consolidating and integrating the current
findings. The concept of Kannan-type interpolative contraction, which maximizes the rate of convergence,
was presented by Karapinar [15], who also brought together a number of previously published results. The
concept in [15] was expanded upon by Yelsilkaya [31] to create the Hardy-Rogers contractive of the Suzuki-
type mapping. Mitrovi c et al. [19] brought in and studied a hybrid contraction that combines a Reich-type
contraction and interpolative-type contractions very recently, motivated by the result in [15]. Accordingly,
Karapinar and Fulga [16] created a new hybrid contraction by fusing interpolative-type contraction with
Jaggi-type contraction.

There has been little or no research on hybrid FP outcomes in relation to #-contraction, according to
the available literature search. As such, we aim to introduce admissible hybrid version of (6-¢)-contraction
and establish various FP results for such mappings in the setting of complete GMS, inspired by the idea of
Jleli and Samet [12] and the work of Karapinar and Fulga [17].

2. Preliminaries

Some basic definitions, vocabulary, and notations that will be used later are reviewed in this section.
In this study, each set = is regarded as non-empty; the set of all natural numbers is denoted by N and the
set of non-negative real numbers by R,. A novel kind of contraction was brought in in 1969 by Kannan
[13]. It is an affirmative response to the question of whether a discontinuous mapping exists in the frame of
complete metric space (CMS) that satisfies specific contractive requirements and has a FP. The theorem is
as follows:

Theorem 2.1. Let (Z,0) be a CMS and Y : = — = be a mapping fulfilling
o(Ys, Tw) < Ao(s, <) + o(w, Tw)]
for all ¢, € =, where X € [0, %) Then Y has a unique FP.
Definition 2.2. [15] Let (Z,0) be a MS. A self mapping Y on Z is called an interpolative Kannan-type
contraction if there exist a constant X € [0,1) and o € (0, 1) such that

o5, T@) < Me(s, 1)) (e(w, Ye2))'~

for all ¢, € E with ¢ # Ts.
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In 1977, Jaggi[11] defined a new concept of a generalized Banach contraction now called Jaggi contraction,
which is one of the first known rational contractive inequalities.

Definition 2.3. [9] Let (E,0) be a MS. A continuous self-mapping Y : 2 — E is called Jaggi contraction

if:
0(s, Ys).0(w, Yw)

ols, @)
for alls,w € 2, ¢ # w and for some a1, a3 € [0,1) with o + ag < 1.

Q(Tg, Tw) < aj —}-OQQ(C,W),

Bianciari 7] brought in the concept of GMS where the triangular inequality is replaced with rectangular
inequality and the Cauchy condition is slightly different . The definitions are as follows:

Definition 2.4. Let = be a non-empty set and o : = X & — Ry be a mapping such that for all ¢, @ € =
and for all distinct points u,v € 2, each of them different from ¢ and w, we have

(4ii) o(s, ™) < o(s,u) + o(u,v) + o(v, ™).
Then, (2, 0) is called a GMS.

Recently, Jleli and Samet [12] brought in a new type of contraction called f-contraction and established
some new FP theorems for such contraction in the context of generalized metric spaces, as brought in by
Bianciari [7].

Definition 2.5. Let (Z,0) be a GMS. A mapping Y : E — = is called 0-contraction if there exists 0 € ©
and r € (0,1) such that for all ¢, € =,

o(Ys, Tw) # 0 = 0(e(Ys, Yw)) < [0(o(s, @))]",
where O is the set of functions 6 : (0,00) — (1, 00) fulfilling the following conditions:
(©1) 6 is non-decreasing;

(©3) for each sequence {t,} C (0,00), lim 6(t,) = 1 if and only if lim (¢,) = 0%;
n—00 t—00

0(t) —1
(0©3) there exist r € (0,1) and [ € (0, 00] such that lim ®) =/.

r—0+t

They showed that the Banach contraction is a special kind of #-contraction while there are f-contractions
which are not Banach contractions. For a recent survey of FP results of #-contraction, we refer to [21].

Definition 2.6. [26] Let T : = — Z and a: E x E — R be mappings. Then, T is called a-admissible if
foralls,w € =, a(s,w) > 1= a(Ys, Tw) > 1.

Definition 2.7. [2/] Let T : 2 — E and o : E X = — Ry be mappings. Then, T is called triangular
a-admissible if

T1) Y is a-admissible,
(T2) a(s,z) > 1 and a(z,w) > 1 = als,w) > 1.

As a modification in the concept of a-admissible mappings, Popescu [23] brought in a-orbital admissible
mappings as follows:
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Definition 2.8. Let T : = — = be a mapping and let o : = x = — Ry be a function. Y is said to be
a-orbital admissible if for all s € =, a(s, Ys) > 1 implies a(Ys, T2¢) > 1.

Definition 2.9. Leta: ExZ — Ry and T : E — = be mappings. Then, Y is called triangular a-orbital
admissible if for all ¢,w € =,

(i) YT is a-orbital admissible;
(ii) a(s,w) > 1 and a(w, Yw) > 1 implies a(s, Yw) > 1.

Definition 2.10. [2/ A mapping ¢ : Ry — Ry is called a (c)-comparison function if it satisfies the
following conditions:

(a) ¢ is nondecreasing;
(b) the series Y7, C"(z) is convergent for z > 0.

Lemma 2.11. [6] Let ® be the family of (¢)-comparison functions and { € ®. Then, the following conditions
hold:

(i) ("(z) — 0 as n — oo for all z > 0;
(i1) ¢(z) < z for all z > 0;
(iii) ¢ is continuous;

(iv) ¢(z) =0 if and only if z = 0;

(v) the series Y o2, ("(z) > 0.

Definition 2.12. [17] Let (Z,0) be a MS. A mapping Y : = — = is said to be an admissible hybrid
contraction if there exist ( € ®, and a mapping a : = X = — R such that

Oz(g, w)Q(T§, Tw)) < C(M)\z (§, w, S, T))? (2)
5
where s > 0 and \; > 0,1 =1,2,...,5, such thatZ/\i =1 and
i=1

[/\1(9(9 2))° + Aa(0(s. T6))* + As(e(w, Tw)*

+A4<Q(W7TW)(1+@(9T<))>S + )\5<Q(W7T§)(1+Q(C7T’W)))s:|

1
s

1+Q(§7w) 1+Q(<’w)
My, (s,,5,T) = for some s > 0, ¢, w € E;
(o, @)™ (o(s, T6))*.(o(w, Tw))*s.

A4 A5
<e<wxw>(1+g(<,r<>>> <g(<,rw><1+g<w,r<)>>
1+o(s,@) ) 2

for s =0, ¢,w € E\ fix(Y).

Here, fiz(Y)={ce€Z:¢= "¢}
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3. Main Results
We begin this section by defining the notion of admissible hybrid (6-¢)-contraction in the setting of GMS.

Definition 3.1. Let (2,0) be a GMS. A mapping Y : E — E is said to be an admissible hybrid (0-C)-
contraction if there exist § € ©, ( € ®, r € (0,1) and a mapping o : = x = — RT such that

Q(OJ(C, W)Q(Tgv Tw)) < [H(C(MAZ (§, w, S, T)))]r7 (3)

where My, (s,w,s,T) is as defined in (2)

Theorem 3.2. Let (Z,0) be a complete GMS and T be an admissible hybrid (6-C)-contraction. Suppose
further that:

(i) Y is triangular a-orbital admissible;

(ii) there exists o € Z such that a(sy, Yso) > 1;

(iii) either Y is continuous or;

(iv) Y? is continuous and a(Ys,s) > 1 for any ¢ € fiz(Y).
Then, Y has a FP in Z.

Proof. By hypothesis (ii), a(so, Tsp) > 1 for some ¢y € =. Define a sequence {s, }nen in = by ¢, = T"q, for
all n € N. Suppose that we can find some ng € N such that ¢,, = ¢,,+1 = Ysp,. This implies that ¢,, is a
FP of T and hence, the proof is complete.

Assume on the contrary that ¢, # ¢,—1 for all n € N. Since a(g, Ys9) > 1 and T is triangular a-orbital

admissible, then,
a(Sp—1,5n) > 1 for all n € N. (4)

Given the fact that Y is an admissible hybrid (6-¢)-contraction, it follows that
O(a((sn-1,5n))0(Tsn—1,Tsn)) < [O(C(M,((Sn-1,5n), 5, T))]" ()
Combining (4) and (5) yields

Q(Oz(gnfl, gn)@(ﬂrgnfla Tgn))
[O(C(Mx; (sn—1,n,5,T)))]" (6)

0(0(snssn+1)) <
<

In furthering the arguments, the following cases are considered:
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Case 1: for s > 0, let ¢ =¢,_1 and @w = ¢,. Then,

My, (Sn—1,%n) = [Aw(cn_l, Sn)® 4+ A20(Sn—1, Tsn—1)" + Az0(sn, T6p)°
<Q(§n7 Tgn)(l + Q(gn—la Tgn—l)))s
+ M\
1+ Q(gn—lv §n)
1

0($n Ysn—1) (1 + 0(sn—1, Ysn)) \°*
+)\5< 1+Q(§n—17§n) ) :|

= [Alg(cn_b Sn)° + A20(sn—1,5n)° + A30(SnsSn+1)°
9 ST 1+ n—1y SN y
+)\4<Q(< St 1) (1 + 0(Sn-1,6 )))
1+ Q(Cn—17§n)

0(sn,sn) (1 + 0(sn—1,5041)) \°
+ )‘5< 1+ 0(Sn—1,5n) ) ]

w |

= |:)\19(§n1, Sn)° + X20(Sn—1,6n)° + A30(SnsSnt1)°

@ =

+ Ai(o(Sn, §n+1))5:|

= [()\1 + X2)0(Sn—1.c,)° + (A3 + A1) o(sn, §n+1)8:| . (7)

Suppose that
0(Sn—1,%n) < 0(Sns Snt1)-
Then, from (6) and (7),

<[0(¢
[0(C(A1 + A2)o(Sn—1,6,)" + (A3 + A1) 0(Gns Snt1)”)
[0(C(A1 + A2)o(Sn, nt1)” + (A3 + Ad)o(Sns Snt1)®)
[
[
[

( (Cn 1,6n, S, T)))]
(

(
O(C(A + Ao + A3+ A\i)¥ o
(o
(

0(0(SnsSn+1))

1
s

I

1
s

IN

]T

(Sns §n+1))]r

IN

9(( (gnagnJrl)))]T
0(0(Sn»snv1))]"

AN

That is, 0(0(Sn, sn+1)) < [0(0(Sn,Sn+1))]”, which is a contradiction for all » € (0,1). Hence,

9(@(§n7§n+1)) [ (C(Q(gn 1=€n)))}’" (8)
< [0(C(¢0(Sn2s n-1)))]"™
0(C%(0(sn—2,5n—1)))]""

IN

IN

[9(Cn(9(§0,<1)))]rn for all n € N.

Thus, we have
1 < 0(o(sns n1)) < [0(¢" (e(s0, )] (9)

Letting n — oo in (9) and using Sandwich theorem, yield:

0(0(sn,snt1)) — 1 as n — o0,
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which implies from (02) that
Jim 0(Sn, Sn+1) = 0.
From condition (©3), there exist r € (0,1) and ¢ € (0, c0] such that

lim 9(9(91791—1-1)) —1 — /.
n—o0o  [0(Sn, Snt1)]”

Suppose that ¢ < oo. In this case, let B = % > 0. From the definition of the limit, there exists ng € N such
that
0(0(snssn41)) — 1

—¢| < B for all n > njg.
[Q(Cn, §n+1)]T

This implies that

0(0(Snssnt1)) — 1
(0(Sns Sns1))"

>{— B = B, for all n > nyg.

Then,

n[o(Sns snt+1)]" < An[0(C" (0(Sn, Sn+1))) — 1], for all n > ny,

where A = %. Suppose now that £ = co. Let B > 0 be an arbitrary positive number. From the definition
of the limit, there exists ng € N such that

H(Q(gm gn—i-l)) —1
(0(Sns Snt1))"

> B, for all n > ny.

This implies that

n[o(Sns snt1)]” < AnfO(C"(0(Sns Snt1))) — 1], for all n > ng,
where A = %. Thus, in all cases, there exist A > 0 and ng € N such that

n[o(sns Snt1)]” < An[0(o(sn, Snt1)) — 1], for all n > ny.

Using (9), we obtain

n[0(sns sn1)]” < An([8(¢" (050, 1)) = 1), for all n > no.
By allowing n — oo in the inequality above, we get

lim nfo(6n, 6nt1)]" = 0.

Consequently, n; € N exists such that

1
0(Sny Snt1) < T, for all n > n;. (10)
nr

Now, we shall prove that T has a periodic point. Suppose that it is not the case, then g, # ¢, for every
n,m € N such that n # m. Using (8), we obtain

0(0(sns sn+2)) < [0(C(o(sn—1,n+1)))]"
(¢ (o(sn—2, )"

IA A

IN

[0(¢™(o(s0,52)))]"" -
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Letting n — oo in the above inequality and using (©3), we have

Jim_o(n, Sny2) = 0.

Similarly, from condition (O3), there exists ns € N such that

1
Q(ngn—l—?) < 1 for all n > na. (11)

nr

Let H = max{ng,n1}. Then, two instances are considered as follows:

(A) If m > 2 is odd, then writing m = 2l + 1, 1 > 1 and using (10) , for all n > H, gives

0(Sns Sntm) < 0(Sns> Sng1)F0(Snt1, Snt2)

+ -+ 0(Snt21 Snt21+1)
1 1 1

< S t+t——ct+ ot ———
nr  (n+1)r (n+20)r
n—+21 1

= 1
i=n U7

1

1
T

M

~

n

.
Il

(B) If m > 2 is even, then writing m = 2[, [ > 2 and using (10) and (11), yields

Q(%,Cn—l-m) < Q(§n7§n+2)+9(§n+2a §n+3)
+ - 4 0(Sn21—15 Snt21)
1 1 1
<Gt ——vtt
nr  (n+2)r (n+20—1)r

IN
ﬂ»—“"

Il
3
.

Thus, combining all the instances, leads to

1
0(SnsSn4m) <Y foralln > H, m € N.

; T
i=n?

o0
1 .
The series Z —T converges since % > 1, which shows that {¢,} is a Cauchy sequence. Since (E,p) is

i=n T
complete, there exists u € = such that ¢, — u as n — oo. Using assumption (7i7) that T is continuous,

leads to
o(u, Tu) = lim o(6, Tsn) = lm o(¢n, Snt1) = o(u, u) = 0.

This implies that u = Yu. Again, from (iv) that Y? is continuous, we have Y2y = li_>m Y%, = u. To see
n o0

that Yu = u, suppose on the opposite that Yu # u, and using the idea in (6), produces

O(a(Yu,u)o(YTu,u))
[0(C(Mn, (Yu, u)))]"
<O(My,(Tu,u))]", (12)

i

0(o(u, Tu)) = 0(e(Y?u, Tu))

IA A
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where

My, (Y, u) = [mg(ru, W)* + Aao(Xu, T2u))* + As(o(u, Yu))*
o(u, Yu)(1 + o(Yu, T2u)) 8
+ /\4( 1+ o(Tu,u) >

+ s <Q(u’ Tglui(lgz;ig)u, Tu)) > S] s

-

_ {m@(ru, W)+ AT, w))® + As(o(u, Tu)’

(T Ty )

0 |

— [()\1 + A2 + A3 + A\g)o(Tu, U)S]
< o(Tu, u).

Hence, (12) becomes 0(o(u, Yu)) < [#(o(u, Yu))]", which is a contradiction for all » € (0,1). Therefore,
Tu=u.
Case 2: for s=0, let ¢ =¢,_1 and @w = ¢,. Then,

M)\i (gnfla §n) =

ﬁi
(

(gnfla gn)) (Q(gn 1, T(n 1 2 gna T§n))
Q(gn) Tgn)(l + Q Sn—1» Tgn 1 > < Sn—1, Tgn)(l + Q(§n7 Tgn—l))>)\5
( 2

1+ 0(Sn—1,%n) 2
Sn—1,50))™M . (0(Sn—1, Tsn—1))**.(0(Sn, Snt))

0(Sn, 1) (1 + 0(Sn—1, Tw)))M (g(gn_l, Gnt1) (1 + 0(sn, <n>)>A5
1+ Q(gn—hgn) . 2

A3

As
n—1y SN + Ty ST
§(9(§n717Cn))(A1+A2)~(Q(§n,§n+1))()\3+>\4)- <Q(§ 1,S ) 2Q(§ S +1))>

))(/\34-)\4)_ (o(sn—1, §n)))\5 + (o(sn, §n+1)))‘5.

<(0(Sn-1,51)) P22 (0(6n, Sng1 5

Suppose that 0(¢,—1,5n) < 0(Sn, Sn+1), then,

M)\i (gnv gn—l—l) S(Q(gn—lv gn))()\l+)\2)~(g(§n7 §n+1))()\3+/\4) -(Q(Qu gn—l—l)))\s

=(o(sn; §n+1))()\1+)‘2+>\3+)\4+)\5)

=0(Sn, Snt1)-

Hence, (6) can be written as

0(0(sn, sn+1)) <[0(¢(0(sn—1,n)))]"
<[0(9(§n7 §n+1))]rﬂ
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which is a contradiction for all » € (0,1). Therefore, by (6),

0(0(sn, sn+1)) < [0(C(0
< 10(¢(¢
= [0(¢*(olsn—2,5n-1)]"

<

Sn—1,5n)))]"
Q(§n—2a §n—1))>)]r

2

2

—~

n

< [0(¢™(o(s0,51))))]" -

Using the same argument as the case of s > 0, it can be obtained that {¢, },en is a Cauchy sequence. Since
(2, 0) is complete, so there exists a point say w such that lim ¢, = u. to see that u is a FP of T, from
n—oo

assumption (7i7), we have
o(u,Yu) = lim o(sp, Ysp) = lim 0(<n, Spt+1) = o(u,u) = 0.
n—oo n—0o0

This implies that u = Yu. Again, from (iv) under the assumption that Y? is continuous as in case (i), we
have

0(0(u, Tu)) = 6(o(T%u, Tu)) <0(a(Tu, u)o(Tu,u))
[O(C(M, (Tu, u)))]"
<O(M, (Tu,u))]"

i

IN A

(u, Tu)))‘l +>\2+>\3+>\+4+)\5]r

[6(e
[6(o(u, Tu))]".
That is, 6(o(u, Yu)) < [#(o(u, Tu))]", which is a contradiction for all » € (0,1). It follows that u = Tu. O

Theorem 3.3. If in Theorem 3.2, we assume an additional condition that a(s,w) > 1 for all ¢, w € fix(T).
Then, the FP of T is unique.

Proof. Let ¢,u be two FP of T such that T¢ = ¢ # u = Tu, then o(s,u) = o(Ys, Tu) # 0 and using (6)
implies

0(o(s, ) = 0(e(Ys, Tu))
[H(C(MM (§, u, s, T)))]T (13)
Case 1: for s >0

My (s, u) = [w(c, 0)° + dalo(s, YO))° + Aa(o(u, Tu))*

o(u, Tu)(1 4 o(s, <)) \*
- M( L+ o(s,u) >

n ()]

N [)‘1(@(9 w))® + A2 (o(s, )" + As(o(u, u))®

(Q(u,u)(l + Q(GS)))S . )\5<Q(u,<)(1 + Q(c,u)))g] :

L+ o(s,u)
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Hence, (13) can be written as

0(o(s,u)) < [0(C((e(s, w)))]" < [Blels, w))]",

which is a contradiction for all r € (0,1). Thus, ¢ = u.
case 2: for s =0

My, (s, u) =(ols, )™ (o(s, T6))*. (o(u, Tu))™e.

(g(u, Tu)(1 + ofs, Tc)))*‘* (g(c, Tu)(1 + o(u, Tc)))“
1+ o(s,u) ' 2

=(o(s,u))™.(0(s,$))**. (o(u, u))s.
(@(U,u)(l + g(c,c)))“i (g(g,u)(l + Q(u,g))))‘s

1+ o(s,u) 2
=0.
Therefore, (13) becomes
0(o(s,u)) < 0(C((0))]" < [6(0)])",
which is a contradiction for all » € (0,1). Hence ¢ = u, showing that the FP of T is unique. O

Corollary 3.4. Let (2, 0) be a CMS and Y : Z — Z be a given mapping. Suppose that there exists r € (0,1)
such that

G(Q(Tga Tw)) < [Q(C(M)\z (§, w, s, T)))]r

for all ¢,w € E\ fiz(Y), where 0 satisfies (©1) — (03), ¢ € ® and My, (s, w,s,T) is as given in 2. Then, T
has a unique FP in =.

Proof. The proof is immediate from theorem 3.2 by taking a(s,w) = 1. O
Corollary 3.5. Given that (E,0) is a CMS and Y : E — = be a given mapping fulfilling:
o(Ts, Tew) < n(My(s, @, 5, 7)),
for all ¢,w € Z\ fix(Y) and n € (0,1). then, T possesses a unique FP in =.
Proof. From Corollary 3.4, let 8(t) = e* and ((t) = nt; t > 0, then the conclusion is fulfilled. O

Corollary 3.6. [10] Let (Z,0) be a CMS and Y : Z — E be a mapping fulfilling:
0(o(T<, T%)) < [B(e(s, Te))I, (14)

for all ¢ € = with o(Ys,Y%5) > 0, where 0 is non-decreasing, continuous and satisfies ©. Then, T has a
unique FP in =.

Note that a self mapping T is said to have the property P if Fiz(Y") = Fixz(Y) for all n € N. Note
that T™ is the n-th iterate of the mapping Y.

Corollary 3.7. [22] Let (E,p) be a CMS Y : £ — E be a given mapping. If there exist r € (0,1) and
0 € Oy such that for all ¢, w € =,

o(T<, Tw) > 0= 0(o(Ys, Yw)) < [B(M (s, )],

where
M(§, w) = max{g(g, w)a Q(§, T§), Q(wa Tw)}

Then, the FP of T is unique in =.
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Proof. Consider the case when s > 0 in Corollary 3.4 and take Ay = A5 = 0. Then the proof is immediate. [

Example 3.8. Let = = {g, = % n € N} U{i7tn>1. Take o(s, @) = |s — @] for all ¢, € E, then
(2, 0) is a CMS. Consider the mapping Y : = — = defined by

Y61 =¢ and T, =g, if n > 2,

and define the mapping o : = x 2 — R4 by

( ) 1, ifn,m e N;
QS S =
e 0, otherwise.

Observe that the Banach contraction is not fulfilled. In fact, we can check easily that

i Q(T%, T§1) . 3n% —5n—2
im — = - @0 @ =
n—o0  0(Gy,S1) n—oo 3n2 4+n —4

Note also that for all ¢,;m ¢ N, there is nothing to show. To see that Y is an admissible hybrid (6-C)-
contraction, it is sufficient to show that

0((sny sm)o(Ysn, Tom)) < [O(C(M, (S Sms s, 1)) (15)

holds for some r € (0,1) and for all n,m € N.
Now, consider the function 6 € © defined by 0(t) = Vtet; t > 0, then for all n,m € N, (15) becomes

0( Y, Y )T Tom) < 2[¢ (M), (Sny Sy 8, 1)) e M (Snsmss. 1))

7

< TZ(M)W (gn’ Sms S, T)@M)‘i (<ny<m,8,’r)‘ (16)

It can be seen that for the both cases where s > 0 and s =0, let Ay =1 and Ao = A3 = Ay = A5 = 0, then
My, (S, Sm» 8, ) = 0(Sn,sm). This implies that (16) can be written as

o(Ysn, Tgm)eQ(T§n7T§m) < r20(cn, gm)eg(%sm)_ (17)
Two instances are considered as follows:
(A) n=1 and m > 2. From (17), we have

o(Ys1, TCm)eQ(TCIvTCm)—Q(q s6m.)

0(S1,Sm)
3mZ24+m—4

<e 1l

(B) m >n > 1. From (17), we have

Q(Tgn) ’rgm)e'g(Tgn’Tgm)_@(gnSm)
Q(Cn, §m)

(3m + 3m — 5)(n — m) e*3(mfn)

(3m +3m +1)(n —m)

<e L




Mohammed Shehu Shagari et. al., Adv. Theory Nonlinear Anal. Appl. 7 (2023), 165-182. 177

Thus, the inequality (17) is fulfilled with r = e~3. This implies that T has a unique FP in =. In this
example, <1 is the unique fixed of Y.

However, T is not an admissible hybrid contraction in the sense of Karapinar and Fulga [17]. To see this,
define a mapping ¢ € ® by ((t) = é for allt > 0. Then, from 15, we have

Q(Tgnp Tgm)eg(Tnggm) < TQC(MM (gna Sms S, T))GC(MAZ (Sn,5m,,T))

1
= ng(MAz (g'fh gm, S, T))e%(MAZ (§n7§m78,T)

< TQM)\i (§n,§m, SaT)eMAi(gn’gm’s,T)‘ (18)

Obviously, (17) and (18) coincide. Here, under the value of \y =1 and Ay = A3 = Ay = A5 = 0, it follows
that the mapping Y is an admissible hybrid (0-C )-contraction. On the other hand, for all ¢,w € =\ fiz(Y),
(2) yields

a(§n7 gm)Q(Tgna Tgm) < C(Q(gn, §m>)7

which implies that
1
oY, Yim) < = (0(sns 5im)). (19)

Pick two points s, =<1 and G, = 5. Then, (19) gives

50(Ys1,Yss) _ 50(2,26)  5[2 — 26

o(s1,55)  0(2,40) |2 — 40|
5(24)
=220,
38

which shows that 2 fails.

4. Applications to Nonlinear Volterra-Fredholm Integral Equation

In this section, one of the obtained results is used to investigate conditions for the existence and unique-
ness of a solution to a nonlinear Volterra-Fredholm equation. To this effect, consider the nonlinear Volterra-
Fredholm integral equation of the first kind given as

t h
¢(t) = 7'1/0 k1(t,s,5(s))ds +7'2/0 ka(t,s,s(s))ds; t€[0,h], (20)

where ¢(t) is the unknown solution, k;(t, s,<(s)) are smooth functions, 7;, h are constants: (i = 1,2). Let
= = C([0, h]) be the set of all continuous real valued functions defined on = with the supremum norm. If =
is equipped with the metric p: Z x Z — Ry defined by o(s, @w) = sup{|s(t) — w(¢)|,t € [0, h]} then, (=, o)
is a CMS. Define a mapping T : = — Z by

t h
Yq(t) :7'1/0 kl(t,s,g(s))ds+72/0 ka(t, s,s(s))ds. (21)

Then, z is a FP of T if and only if z is a solution to (20). Under the following assumptions, we now examine
the solvability conditions of the nonlinear Volterra-Fredholm integration equation (20).

Theorem 4.1. Suppose that the following conditions are fulfilled:
(i) Y is a continuous mapping and k; : [0, h] x [0, h] x R — R;

(ii) for some constants A;, there exist r € (0,1) and ¢ € ® such that
‘ki@? S,§(t>) - ki(tv s,w(g))| < Az[C\g(S) - w(s)H: where 1 = 1,2;
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(iii) 6t + nh <1 =1r € (0,1), where 1A1 =0, and T2 A2 = 1.
Then, the integral equation (20) has a unique solution in =.

Proof. Observe that for all ¢, € =, using (21) and the hypotheses in Theorem 4.1,

t h t
|Ts(t) — Yw(t)| = 7'1/0 ki(t,s,s(s))ds +72/0 ka(t, s,s(s))ds — [7'1/0 ki(t,s,w(s))ds

+m4h@@ﬁﬂﬂgm4

el tk:l(t, $,6(8))ds — ki(t, s, (s))ds| + 7o ' ka(t, s,s(s))ds — ka(t, s, w(s))ds
0 0

<m /OtAl [Cls(s) = w(s)]]ds + 7 /OhA2[C\<(8) —w(s)|]ds

t h
“ri[cls) = =] [ s+ mslrats) )] [ ds

<nAi[Clls — @[]t + 2 A2[C|ls — = ||k
=(m1 A1t + T2 A2h)[Clls — @]
=(6t +nh)[Clls — @] < r(lls — =||.

This implies that sup |Ys(t) — YTw(t)| < r{(o(s,w)). Hence,
te[0,h]

o(Ys, Tw) < r¢(o(s, @)). (22)
Taking exponential of both sides of (22) and define a mapping 6 € © by (t) = ¢, then (22) yields
0(o(Ts, Tw)) < [0(C(e(s, @)))]"-

And it follows from Corollary 3.4 that T has a unique FP in Z by taking Ay =1l and da = A3 =A4 = X5 =0
for both cases when s > 0 and s = 0. O

5. Numerical Example

This section establishes a numerical example to support the reliability of the given results, using a class
of integral equation. The ideas used in this section are motivated by [1]. Let = = C(]0, 1], R) be the set of
all continuous real-valued functions, and T : = — = be a mapping defined by

1
quzwuyﬂ/kﬁﬁk@uﬁ ts 0,1 (23)
0
Let 1 (t) = 2t cos(t) and k(t, s)s(s) = t?sin(s(s)). Then, by substitution, equation (23) becomes
1
Y<(t) = 2t cos(t) +/ 2 sin(s(s))ds. (24)
0

Let ¢ : [0,00) — [0, 00) be a mapping fulfilling the condition:
(A) |sin(s(s)) —sin(w(s))| < r(¢[s(s) — w(s)|) for some r € (0,1).
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Note that for any ¢, € E and using condition (A) in (24), we have

1 1
—YTw =|2t cos 2 sin s — 2tcos(t) — 2 sin(ww S
|T<(t) — T (t)] '21& (t) + /O t?sin(s(t))ds — 2t cos(t) /0 t?sin(ew(t))d

1 1
2 i — 2 sin(w s
/0 t*sin(s(t))ds /0 t*sin(w(t))d

1
/0 t[sin(s(t)) — sin(w(t))]ds

§/0 |£?|[| sin(s(t)) — sin(w(t))|] ds
< [ riclst) = =oDas

r(Cls(s) s>r>/0ds
(

=r(Cls(s) —@(s)]).
This implies that
o(Ys, Tw) < r¢(o(s, @)). (25)
Now, taking exponential of both sides of (25) and define a mapping 6 € © by 0(t) = e!, then (25) yield
0(o(Ys, Tw)) < [0(¢(e(s, @)))]"- (26)

And it follows from Corollary 3.4 that T has a unique FP in = by taking Ay = land da = A3 =24 = A5 =0
for both cases when s > 0 and s = 0.

Furthermore, the iterative method will be employed to examine the viability of our technique. Tables 1,2,
3, 4 and 5 show the sequence of iteration of ¢,41(t) = Y, (t) = 2tcos(t) + fol 2 sin(s,(s))ds. Let ¢o(t) = 0
be an initial fixed solution.

Table 1: for t = 0.2

n | $p+1(0.2) | Approximate Solution | Absolute Error
0] «(0.2) 0.399998 2% 1076
1] «(0.2) 0.400277 2.77x1071
2 | (0.2 0.400277 2.77x10~4
3] <(0.2) 0.400277 2.77x10~%

Table 2: for t = 0.4

n | ¢,+1(0.4) | Approximate Solution | Absolute Error
0| <1(0.4) 0.799981 1.9 x 107°

1] (0.4) 0.802215 2.215 x 1073
2| «(0.4) 0.802221 2.221 x 103
3| «(0.4) 0.802221 2.221 x 103

Table 3: for t = 0.6

n | $,+1(0.6) | Approximate Solution | Absolute Error
0| <(0.6) 1.1999342 6.6 x 107

1| (0.6) 1.207473 7.473 x 1073
2| (0.6) 1.207520 7.52 x 1073
3] <(0.6) 1.207520 7.52 x 1073
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Table 4: for t = 0.8

n | ,+1(0.8) | Approximate Solution | Absolute Error
0] <(0.8) 1.599844 1.56 x 1074
1] «(0.8) 1.623296 2.3296 x 1072
2 | (0.8) 1.623640 2.364 x 1072
3| (0.8 1.623645 2.3645 x 1072
41 ¢(0.8) 1.623645 2.3645 x 1072
Table 5: fort =1

n | sp+1(1) | Approximate Solution | Absolute Error
0 «(1) 1.999695 3.05 x 10~*

1] (1) 2,034589 3.4589 x 1072
2| (1) 2.035198 3.5198 x 1072
31 «(1) 2.035208 3.5208 x 1072
31 «(1) 2.035208 3.5208 x 1072

Note from the tables that ¢(¢f) = 2t is the exact solution of equation (23). Moreover, Figures 1 and 2
show the convergence behaviours of the sequence ¢,41(t) = s, (t).

uuuuu

0.8015 g = 4

Approximate Solution

~ 1 ) 3

Iterations

Figure 1: The graph shows that the sequence ¢n4+1(t) = Ysn(t) = 2t cos(t) + fol t? sin(s, (s))ds converges to the exact solution
of 2t for t = 0.4.



Mohammed Shehu Shagari et. al., Adv. Theory Nonlinear Anal. Appl. 7 (2023), 165-182. 181

204
-~ e &
g 03
2
E 202 ——t=1
wy
2 2m
m
E
b
o
=4 194
(="
= 1.98
0 1 2 3 4
Iterations

Figure 2: The graph shows that the sequence ¢,4+1(t) = Y, (t) = 2t cos(t) + fol t? sin(s, (s))ds converges to the exact solution
of 2t for t = 1.

6. Conclusion

This paper studied a new idea under the name admissible hybrid (#-¢)-contraction and examined con-
ditions under which such mappings possess some FPs in the context of CMS. It has been deduced, by way
of corollaries that the ideas proposed herein are new and improve some previously published results in the
related literature. Regarding application, the existence and uniqueness of solutions to a mixed integral
equations were established via the aid of one of the deduced consequences. Numerical example has also
been constructed to further illustrate the effectiveness of the results obtained herein.
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