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ABSTRACT. This paper examines the impact of frequency-modulated
(FM) signals on vibrational resonance (VR) in a position-dependent
mass (PDM)-Duffing oscillator system. FM signals are categorized into
two types: narrow-band FM (NBFM) and wide-band FM (WBFM). We
conduct a numerical study to analyze the effects of both FM signals on
the system. The occurrence of VR is investigated not only based on sig-
nal parameters (g,w,2) but also considering the contributions of PDM
parameters (mo, A). In addition to various dynamic phenomena such as
period-doubling bifurcation, reverse period-doubling bifurcation, chaos,
and attractor crises, our numerical simulations reveal several noteworthy
observations. These include the emergence of multiple resonance peaks,
the absence of response amplitude decay, the presence of hysteresis, and
a jump phenomenon induced by the FM signal. By delving into phase
portraits, bifurcation diagrams, trajectory plots, and resonance plots,
we elucidate the underlying resonance mechanisms and provide insights
into the distinctive features of the resonance curve.
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1. Introduction

Over the past two decades, significant attention has been directed to-
wards signal processing in nonlinear systems. There are numerous methods
for enhancing the response amplitude of a weak signal, with one of the most
crucial approaches being vibrational resonance (VR). In VR, a bistable sys-
tem is subjected to the influence of a biharmonic signal with vastly different
frequencies. The concept of vibrational resonance (VR) was initially docu-
mented by Landa and McClintock [1] in a biharmonically driven bistable sys-
tem when a substantial discrepancy exists between the frequencies (2 > w)
of the two driving forces. Subsequently, analytical investigations to con-
firm VR were conducted by Gitterman |2| and Blekhman and Landa [3].
Following these pioneering works, researchers have delved into the theoret-
ical, numerical, and experimental exploration of this resonance in various
nonlinear systems [4-10]. The examination of two-frequency signals holds
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significance in communication systems since low-frequency signals typically
modulate high-frequency carrier signals. Furthermore, this concept finds ap-
plication in numerous other domains of physics and biology, including laser
physics [11], acoustics [12], neuroscience [13], and ionospheric physics [14].
High-frequency forces have also been noted for their practical importance,
particularly in medical applications [15-18].

The phenomenon of mass variation concerning velocity, position, time, or a
combination thereof is referred to as "varying mass." Systems with varying
masses manifest in diverse fields, including semiconductor theory [19,20],
rocket motion [21], raindrop behavior [22], the inversion potential for N Hj
in density theory [23], the accretion of planets and asteroids in the early solar
system [24], and neutrino mass oscillators [25|. In position-dependent mass
(PDM) systems, where the variable mass is specified in terms of its position,
various types of mass variation functions have been explored [26,27|. In the
classical framework, a position-dependent mass function m(z) gives rise to
"forces quadratic in velocity," resulting in nonlinear differential equations of
motion within the Newtonian framework.

2. Frequency Modulated Signals

The Frequency Modulated (FM) signal is typically classified into two main
types: Narrow Band FM (NBFM) and Wide Band FM (WBFM), also known
as Broadband FM. NBFM signals are characterized by their narrower band-
width. The modulation index (Mf) of an NBFM signal is typically small,
usually less than one radian. Consequently, the spectrum of an NBFM signal
comprises the carrier frequency and upper and lower sidebands. Mathemat-
ically, the NBFM signal can be expressed as follows:

S1(t) = f(coswt — gsin Qtsinwt), O >> w, (1)

In this equation, f represents the amplitude of the low-frequency (w) periodic
signal, which is modulated by a high-frequency () periodic signal with
amplitude g. NBFM signals find applications in FM mobile communications,
including police wireless, ambulances, and taxicabs, among others. When the
modulation index takes on a large value, the FM signal ideally contains the
carrier and an infinite number of sidebands symmetrically positioned around
the carrier. Such an FM signal has an infinite bandwidth and is referred to
as the Wide Band FM (WBFM) signal. Mathematically, the WBFM signal
can be represented as:

So(t) = fsin(wt + gsinQt), Q >> w. (2)

The modulation index of the WBFM signal typically exceeds 1. WBFM
signals are commonly used in entertainment broadcasting applications, such
as FM radio and TV. Notably, some researchers have employed this signal to
investigate various nonlinear phenomena in specific nonlinear systems [28,29].
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3. Classical description of the system

Consider a classical PDM systems described by the Lagrangian

L@, it) =T — V(z) = %m(az):’vQ V() 3)

where T' = 1m(z)i? is the kinetic energy of the system, V() is the system’s
potential and m(z) is the position-dependent mass function with x being
position at time t. The associated Lagrangian equation of motion can be

written as

d (OL oL

2 ZZ) =9 4

dt <8x> Oz ’ @
where ® accounts for all the external contributions to the motion from dis-
sipative and driving forces, assumed here to be ® = —ad + S(t), « is the

damping coefficient and S(t) is the frequency modulated signals (S1(t) and
Sa(t)). Using Eq.(3) in Eq.(4), the equation of motion of damped and driven
classical oscillator may be written as

L Lo o dV(z)
m(x)r + -m(x)r” +
()i + o ()i +
The prime in Eq.(5) implies differentiation with respect to space variable z
and the over dot indicates differentiation with respect to time. Among the
various types of mass variation function, we use the following mass variation
function in the present study

e (5)

mo
e 6
14 \z?’ (6)

where my is a constant mass, equivalent to the mass amplitude and A is the
strength of the spatial nonlinearity in mass. The mass function is originally
proposed by Mathews and Lakshmanan [26] in relation to relativistic fields
of elementary particles. It appears frequently in the modelling of diverse
nonlinear mechanical systems [30-32|. Further in the following analysis, we
consider a Duffing type oscillator potential, ie.,

1 1
Viw) = 5 miz)wf 2+ fat, 7)
where wy is the oscillator’s natural frequency and [ is the stiffness constant
which plays the role of the nonlinear parameter.
From the above one can easily show that the equation of motion of the

PDM-Duffing oscillator can be written as

m(x)

m(z) & — m?(x)ey\i? + ai + m?(x) ywi « + B2 = S(t), (8)

where v = mio When the strength of nonlinearity in mass is negligible, that
is A = 0, unit mass amplitude m(0) = 1 and g = 0, Eq.(8) reduces to the
well known Duffing oscillator equation driven by FM signal. The physical

system (Eq.8) describes a dual frequency operated gas bubble in which the
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mass of the bubble depends on the radius of the bubble, which is a spatial
coordinate [33]. By dividing Eq.(8) by m(z) we express it as

i—mo(1+ Az " zi? — ywdz) +y(14 A2?) (ad + Bz3) = y(14 \z?)S(t)

(9)
The term (1 + Az?)~! which can be approximated using the binomial ex-
pansion. Considering only the first three terms of the binomial expansion of
(14 Ax?)~!, we write Eq.(9) as

i—mo (1= 4+222h) (YA i —ywdz) +y(1+A2?) (ad+B23) = y(14+ 2?)S(t)

(10)
After some mathematical manipulations given in ref.[32], Eq.(10) can be
expressed in the form,

=Mz = x®+ 22 2°)i? +ay(1+ 2?)d +wid x+0x° +Ex° = y(1+ X x?) S(t),
(11)

where § = By — w2 and € = ByA+A2w3. Eq.(11) is also known as the PDM-

Duffing oscillator equation. The corresponding potential of the system is

wi 5, 0 4 & g

V(x)—2x+4x +6x. (12)
In our current study, we have selected specific mass parameter regimes that
result in a double-well system potential. These regimes are characterized
by 0 < mo < 1.5 and 0 < X\ < 1, with fixed values of a = 0.2, w? = —1,
B =1, and f = 0.05. The system potential, as depicted in Figures 1(a) and
1(b), corresponds to different combinations of the position-dependent mass
(PDM) parameters: mass amplitude mg (values of 0.5, 1.5, 2.0, 4.0) with A
held constant at 1.0, and the strength of spatial nonlinearity in mass \ (values
of 0, 1.0, 1.5, 2.0) with mg fixed at 1.0. This potential is computed using Eq.
(12). It is noteworthy that a recent study by Suddalai Kannan et al. [34]
investigated and analyzed the vibrational resonance (VR) phenomenon in a
double-well position-dependent mass (PDM)-Duffing oscillator system driven
by an amplitude-modulated signal. In contrast, our present work focuses on
the numerical analysis of VR in a double-well PDM-Duffing oscillator system
subjected to a frequency-modulated (FM) signal

4. Analysis of Vibrational Resonance

In this section, we analyze the existence of VR in the system (Eq.11)
with NBFM and WBFM signals. To determine VR, we use the amplitude
of the response at the frequency w of the signal. Indeed, using the fourth-
order Runge-Kutta method with time step size, we numerically integrate
the system Eq.(11) under consideration. Thus the numerical solution of z(t)
allows to calculating the amplitude response @) through the following formula
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FIGURE 1. Shape of the potential V(x) for (a) A = 1.0,mg =
0.5,1.5,2.0,4.0 (b) mg = 1.0, A = 0,1.0,1.5,2.0. The values

of the other parameters are § = 1 and wg = —1.
2 nT
Qs = T J, x(t) sin(wt)dt (13a)
2 nT
Qc = T, x(t) cos(wt)dt (13b)

with T'= 27 /w is the period of the response and n is taken as 200. Then,

Q- \/Q§f+ Qz (130)

In all the calculations, the initial conditions are chosen as z(0) = 0.1 and
#(0) = 0. The values of the system parameters are a = 0.2,8 = 1,wé = —
and f = 0.05. The aim of the present work is to make the resonance appear
or disappear through adjusting the signal parameters (g, w,2) and the PDM
parameters (mg, \).

4.1. VR in PDM-Duffing system with NBFM signal. Under the ex-
citation of NBFM signal, the PDM-Duffing oscillator is described by the
following equations

T =y (14a)
g = Mz —Md + 2\ 2%)i? —ay(1 4+ Aah)d — wd o — o — €a® +
(1 +X2?) Si(t), (14b)

We begin by examining the presence of VR in the system using Eq.( 14),
assuming a constant mass, denoted as m(x) = my, and setting A to zero.
Figure 2 illustrates the variation of () concerning the parameter g and the
influence of the parameters mg, w, and Q. In Figure 2(a), we plot @ against
g for three different values of mg (namely, 0.5, 1.0, and 1.5), while keeping
Aat 0, wat 0.75, and © at 15.0. For mg = 0.5 and 0.75, resonance does not
occur when g < 76.5 and g < 151.3, respectively. However, when g > 76.5 for
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FIGURE 2. The response amplitude ) as a function of the
amplitude of the high-frequency (g) component of the NBFM
signal for different values of (a) mg = (0.5,0.75,1.2) with A =
0,w = 0.75,Q2 =15 (b) w = (1.5,2.5,3.0) with A = 0,mg =
0.5, = 15 (c¢) © = (18,21,30) with A = 0,mp = 0.5,w =
0.75. The values of the other parameters are 8 = 1,wi = —1
and f = 0.05.

mg = 0.5 and g > 151.3 for mg = 0.75, three resonance peaks appear for the
former and a single resonance peak for the latter. Conversely, for mg = 1.2,
the value of ) continuously decreases as g varies, and no resonance occurs.
From Figure 2(a), it is evident that the number of resonance peaks decreases
with an increase in mg. The influence of w on the observed resonance is
presented in Figure 2(b), with A set to 0, mg at 0.5, and Q at 15.0. As the
frequency of the low-frequency signal, w, increases, enhanced VR becomes
apparent for all values of w. For w = 1.5, 2.0, and 3.0, the first resonance
peak occurs in the interval 0 < g < 159.5. Furthermore, beyond this interval,
multiple resonance peaks appear for all values of w as shown in Figure 2(b).
Specifically, for w = 1.5, 2.0, and 3.0, the first resonance peak occurs at
g = gvr = 50.5 with Qe = 10.3, g = gyr = 80.5 with Qmaz = 25.5,
and g = gyr = 97.5 with Qe = 30.3, respectively. As w increases, both
Qmaz and the peak position shift in the direction of increasing w. In Figure
2(c), we explore the impact of the frequency of the high-frequency signal,
Q, on the observed resonance for mg = 0.5 and w = 0.75. For Q = 30,
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FIGURE 3. The response amplitude @ as a function of
the amplitude of the high-frequency (g) component of the
NBFM signal for different values of (a) mg = 0.5(solid
line), 1.0(dashed line),1.5(dotted line)(b) A = 0.2(solid line),
0.5(dashed line),0.7(dotted line) (¢) w = 0.75(solid line),
1.0 (dashed line), 2.0(dotted line) (d) © = 21(solid line),
27(dashed line), 36 (dotted line). The values of the other
parameters are 8 = 1,w? = —1 and f = 0.05.

as ¢ increases, () decreases, and resonance is not observed. However, for
) = 18, two resonances are found at g = 125.2 and g = 181.5. In contrast,
for €2 = 21, only one resonance is found at g = 249.5. From Figure 2, it is
clear that the VR phenomenon can be enhanced by adjusting the parameters
of the PDM and the signal.

Additionally, when we activate the spatial nonlinearity parameter A\ of
the mass and examine the dependence of ) on mg,w, and €2, the results
are presented in Figure 3. Figure 3(a) illustrates the response curves that
show the relationship between the response amplitude () and the amplitude
g of the high-frequency signal. This analysis is conducted for A = 0.1,w =
1.5,Q2 = 30, and three different values of mg = 0.5,1,1.5. From Figure
3(a), it is evident that the maximum response amplitude @ increases as mq
increases. Double resonances are observed for mg = 0.5 and 1.0, whereas
a single resonance is found for mg = 1.5. To investigate the impact of the
mass spatial nonlinearity parameter A on the system’s response, we depict
the relationship between the response amplitude ) and the amplitude g of
the high-frequency signal for three values of A = 0.2,0.5,0.7 in Figure 3(b).
The values of the other parameters are kept constant at mg = 0.5,w =
1.5, and 2 = 30. The shape of the resonance curve and the maximum
response amplitude @Qq, are both influenced by A. It is observed that the
maximum response amplitude Q.4 at which VR occurs increases with a
greater strength of spatial nonlinearity in the mass, as shown in Figure 3(b).
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FIGURE 4. Dependence of the response amplitude @ on g for
B=1,w2=—1and f=0.05.

In our previous discussions, we established that the VR phenomenon can
manifest in PDM parameters such as mg and A. Now, we proceed to confirm
the presence of the VR phenomenon in the context of the driving signal fre-
quencies, namely (w, ). In Figure 3(c), we depict the relationship between
the response amplitude, @), and the amplitude of the high-frequency signal, g,
for three different values of w (0.75,1.0,2.0) while keeping mo = 0.5, A = 0.1,
and © = 30. It is worth noting that in Figure 3(c), double resonances occur
for w = 0.75 and w = 2.0. However, for w = 1.0, multiple resonance peaks
emerge in the range 0 < g < 48.5, followed by double resonances beyond this
interval. These multiple resonance peaks are induced by the high-frequency
harmonic driving. Finally, we investigate the impact of the frequency of the
high-frequency component, €2, on VR. The resonance curves are presented in
Figure 3(d) for three different values of 2 (21,27, 36) while keeping w = 0.5,
A = 0.1, and mg = 0.5. Double resonances are observed for 2 = 21 and
Q) = 27, while a single resonance occurs for 2 = 36. The values of Q4. for
the first and second resonances are nearly identical across all the values of 2.
However, as €2 increases, both g, and the width of the resonance curves
increase.

Figure 4 provides an explanation for the enhancement of resonance due
to the mass amplitude mg. In this figure, the plot is divided into three
regions: region-I1 (0 < g < 30.7), region-1T (30.7 < g < 45.8), and region-I11
(45.8 < g < 100). As g increases from region-I, the response amplitude
Q) increases, reaching its maximum value at ¢ = gmar = 45.8 in region-11,
but then decreases with further increases in g in region-III. Figures 5 and 6
present the phase portraits and trajectory plots corresponding to the regions
in Fig. 4. In all three regions, the motion is periodic with a period of
T =27 /w. In region-I (0 < g < 30.7), each periodic orbit remains confined
to one well without cross-well motion (Figs. 5(a) and 6(a)). In this region,
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FIGURE 5. Phase portraits for different values of high-
frequency amplitude g. The other parameters are fixed at
mo = 05X = O,w = 15,0 = 15,8 = 1,wd = —1 and
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FIGURE 6. Trajectory plots for few values of g. The other
parameters are fixed at mg = 0.5, A =0,w =1.5,2=15,8=
L,w=—1and f =0.05.

the response amplitude () increases smoothly and gradually with increasing
g. When g = 30.7, cross-well motion begins, and the trajectory spends
relatively little time in the regions « < 0 and x > 0. This dynamic behavior
characterizes region-II, as seen in Figs. 5(b) and 6(b). In this region, there
is a rapid increase in amplitude @ and region-II is quite narrow. Although
the period of the orbit in region-III is still T, its shape differs from those
in regions I and II. Fig. 5(c) illustrates the phase portrait of the period-
T orbit for g = 45.8, while the corresponding trajectory plot is shown in
Fig. 6(c). In region-III, as g increases, the response amplitude @ reaches
its maximum value at ¢ = gmer = 45.8, significantly enhancing the weak
signal. Both figures 5(c) and 6(c) illustrate that the PDM parameters can
enhance VR and improve the weak low-frequency signal in the system. When
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F1GURE 7. Bifurcation diagrams of the system (Eq.11) with
(a) A=0and (b) A = 0.1. The other parameters are fixed at
mo=0.5w=150=1508=1,w}=—1and f = 0.05.
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FIGURE 8. Bifurcation diagrams of the system (Eq.11). Here
mo = 15X=0,w=150Q=1583= 1,0 = —1,f = 0.05
and g is varied in the forward direction in (a) while it is
decreased from a large value to small value in (b).

g increases above gmqz, the response amplitude ) gradually decreases and
eventually decays to zero. The corresponding phase portrait and trajectory
plot for g = 65.8 (far from the resonance) are shown in Figs. 5(d) and 6(d).
These two figures can be compared with the phase portrait and trajectory
plot of orbits in regions I and II, revealing a different orbit shape in this
case. The bifurcation diagram of the PDM-Duffing oscillator system, with
and without the mass spatial nonlinearity parameter \ for mg = 0.5, is
presented in Figs. 7(a) and 7(b). These diagrams display stable periodic
orbits, period-doubling, reverse period-doubling, attractor crises, and chaotic
dynamics. After introducing the mass spatial nonlinearity parameter A the
chaotic orbit is significantly suppressed, as clearly shown in Fig. 7(b).

4.2. Hysteresis phenomenon. Figures 8(a) and 8(b) depict the bifurca-
tion diagram obtained by varying the parameter g in the forward and reverse
directions, respectively. We have maintained the values of the other param-
eters as constants, specifically w = 1.5, Q = 15, a = 0.2, 3 = 1.0, v = —1,
and f = 0.05. In this bifurcation diagram, the ordinate represents the values
of x(t) recorded at time intervals equal to every integral multiple of 27 /w
(referred to as Poincaré points) after allowing sufficient time for system evo-

lution. Figures 8(a) and 8(b) reveal different trajectories. These figures
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FIGURE 9. The response amplitude ) as a function of the
amplitude of the high-frequency (g) component of the WBFM
signal for different values of (a) mg = 0.5 (b) mg = 1.0 (c)

mo = 1.5. The values of the other parameters are 3 = 1,w3 =
—1,w=0.75,2=15,A=0and f = 0.05.

illustrate that the system exhibits a hysteresis phenomenon as the control
parameter g is smoothly varied from a small value to a larger one and then
back to a small value.

4.3. VR in PDM-Duffing system with WBFM signal. In the pre-
ceding section, we examined the occurrence of VR using an NBFM signal
within the system described by Eq. 11, considering various PDM and signal
parameters. In this section, we undertake a numerical analysis to investigate
the presence of vibrational resonance in the PDM-Duffing oscillator system
(governed by Eq. 11) driven by a WBFM signal. When subjected to the
excitation of a WBFM signal, the dynamics of the PDM-Duffing oscillator
are described by the following equations

i o=y (152)
= Mz - ®+ 22 259)i% — ay(1 + Ma?)i — wi o — 02® — €a® +
(1 +Az?) Sa(t), (15b)

First, we conduct a numerical analysis to examine the occurrence of Vi-
brational Resonance (VR) in the system described by Eq.(15) with a fixed
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mass amplitude (my), i.e., without considering the mass spatial nonlinearity
parameter (A = 0). The results are presented in Figure 9. In Figure 9, we
depict the response amplitude @ as a function of the amplitude g of the fast
signal in the range g € [0,100]. We maintain w = 0.75, Q = 15.0, and keep
other parameters constant, as previously defined. In this figure, we investi-
gate the influence of the mass amplitude mg with values of mg set to 0.5,
1.0, and 1.5, respectively, on VR using numerical simulations. As illustrated
in the figure, multiple resonances are observed for all values of mg, and as
mo increases, the maximum response amplitude (@) decreases. Figure
10 examines the role of mass spatial nonlinearity parameter A on the VR
effect. The conclusion is consistent with that in the system with a fixed
mass amplitude myg (i.e., A = 0), indicating that Q. of VR decreases as
my increases.

Now, we turn our attention to explaining the underlying dynamics asso-
ciated with the occurrence of resonances. To facilitate this, we find it highly
convenient to utilize time series and phase space plots. Figures 11 and 12
provide insights into the behavior of the response when g falls within the
resonance region, considering cases with mg = 0.5, 1.5, and A = 0. For

0.08—————
m,=0.51=0.1 @)

Q 0.04]

0.00 :
0 50 100

0.04]1M=1.0A=0.1 (0)

Q 0.02{

0.00
0

0.031
0.02
0.01
0.00

0 50 100
g

FIGURE 10. The response amplitude @) as a function of the
amplitude of the high-frequency (g) component of the WBFM
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FIGURE 12. Phase portraits for a few values of high-
frequency amplitude g chosen in the resonant regions in

Fig.9(a). The corresponding parameters are the same as those
in Fig.9(a).

mo = 0.5, as illustrated in Figure 11(a), the response trajectories, repre-
sented by solid, dashed, and dotted lines, correspond to different values of g
within the resonant regions shown in Figure 9(a). These trajectories reveal
that the displacement of the particles modulates as mg increases. The corre-
sponding phase portraits, as shown in Figure 12(a), confirm the monotonic
increase in the size of the periodic orbit. As another example of this scenario,
we present in Figures 11(b) and 12(b) the effect of the response amplitude
for mg = 1.5 and A = 0. In this case, the amplitude of the high-frequency
signal, g, increases from 0 to 100, leading to modulation in the particle dis-
placement amplitudes, as depicted in the time series plot in Figure 11(b).
Correspondingly, a monotonic increase in the size of the periodic orbit is
evident in the phase portrait shown in Figure 12(b).

5. Conclusion

In this study, we conducted numerical investigations to explore the impact
of frequency-modulated (FM) signals on vibrational resonance (VR) within a
position-dependent mass (PDM)-Duffing oscillator system. FM signals were
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categorized into two main types: narrow-band FM (NBFM) and wide-band
FM (WBFM) signals. Our numerical simulations have revealed that PDM
parameters exert a significant influence on VR, allowing for the suppression,
induction, or modulation of vibrational peaks. The use of FM signals has
demonstrated its potential to control a variety of complex phenomena. Be-
yond the dynamic changes, which include period-doubling splitting, inverse
period-doubling splitting, crises, and chaotic orbits, we have observed a mul-
titude of resonance peaks, an enhancement in response amplitude Q(w), the
persistence of non-decaying Q(w), as well as intriguing behaviors such as
hysteresis and a jump phenomenon. Remarkably, these effects persist even

for large values of PDM and signal parameters.

Exploring the influence of FM signals and pulse-modulated signals on
various types of systems, as well as their interaction with various external
forces, holds promise for yielding fascinating and novel results in the field of
dynamic systems research.
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