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Abstract

In the current work, we study the temporal dynamics of hepatitis B keeping in view the various routs of
transmission and infectious periods. We develop the epidemic model to study its qualitative analysis, while
keeping in view the asymptomatic and symptomatic infections periods. We then discuss the well-possedness
of the proposed epidemic problem. Particularly, we show the bounded-ness and positivity as well as existence
of solution to the proposed epidemic problem. We also calculate the basic reproductive number and discuss
the local and global dynamical properties of the considered model. For the local stability, we use the linear
stability approach, while for global stability the well known LaSalle’s principle are used. Finally, all the
theoretical parts have been supported with the help of graphical representation.

Keywords: Hepatitis B model epidemic problem basic reproductive number linear stability analysis
local and global dynamics numerical simulation.
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1. Introduction

The inflammation of liver due to hepatitis B virus (HBV) infection leads to cirrhosis, a severe form
of liver scarring, which change the structural of the host cells and damage the liver’s ability to function
properly. HBV attacks hepatocytes, which produce liver infection at the same time as the liver clearing
the virus from the body. HBV infection has distinct periods of infection (chronic and acute). The infection
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upto 180 days refers to the acute stage. During this stage the body immunity have the ability to finish the
infectious hepatitis B virus, but some time lead to long illness and a more serious phase, called the chronic
period of the disease. If an individual have the infection of HBV for more than 180 days causes life long
or chronic illness. Usually in this stage often, the individuals have no history of acute illness. The life long
illness in the chronic period of the disease dissipate of cirrhosis of liver, which causes liver failure and cancer
[1]. The different sources of transferring HBV includes: sharing of blades tooth brushes and razors, secretion
of vaginal and semen etc. [2, 3, 4, 5]. In addition, another transmission source is vertical transmission i.e.,
from infected mother to newborn baby [6]. Worldwide billion of people are infected with the contagious
infection of HBV, in which only in China (93) million of people are infected [7, 8]. The most effective control
measure for the preventive mechanism of HBV which provide immunity for at least 25 years is the hepatitis
B vaccination [9, 10].

The infectious disease epidemiology is a rich filed and have a wealthy literature. Numerous of researchers
investigated the temporal dynamics of distinct infectious diseases to learn the dynamics and provide the
control analysis. Hepatitis B is one of the leading cause of death, therefore got the attention of researches
in order to develop different epidemiological models [11, 12, 13, 14, 15]. A simple basic model has been
presented to explore the dynamics of HBV by Anderson in the United Kingdom [16]. Williams et al.
investigated the HBV dynamics in order to present the control analysis for the infection [17]. Further, the
control mechanism with prediction has been presented by Medley et al. [18]. In addition, a model with
age effect to evaluate the vaccination in China has been presented by Zhao et al. [19]. The concept of
classical SIR model has been used to suggest control implantation by Bakare et al. [20]. Some control
strategies with the aid of epidemiological models have been presented by Kamyad et al. [21]. To evaluate
the various endemic states of HBV, a model studied in [22]. Similarly the dynamics of HBV with the aid
of mathematical model investigated by Zhang et al. [23]. Recently, Kyere et al. [24] and Khan et al. [25]
studied different models to evaluate the effect of involved parameters in the spreading of disease and used
suitable control strategies for eliminating of the disease.

Although, the literature revalues that numerous of research articles have been presented which provide
valuable outputs while investigating the dynamics and control of HBV. We noted that hepatitis B has many
infectious periods and transmission routs. Asymptomatic and symptomatic population are very significant.
Especially, in case of asymptomatic the individuals have no clear symptoms while spreads the disease. In
the proposed work, we extend the work reported in [25] in order to investigate the dynamics of HBV keeping
in view the disease various infection periods and source of transferring. Nevertheless, the reported work
present a useful contribution to the epidemiology of HBV, however we would like to improve in order to
incorporate new classes and parameters. We formulate the epidemic problem with new phenomenon by
enriching the literature more feasible and interesting. We formulate the model along with the categorization
of two infected compartments, asymptomatic and symptomatic with the aid of probabilistic transmission
approach. We prove the basic properties to make the model feasible and well possed. We also show the
existence analysis using the approach of cauchy abstract problem. Further calculating the equilibria of the
proposed model, we first find the basic reproductive number and then on the basis of equilibria, we discuss
the stabilities. We than prove that the proposed model is globally and locally asymptotically stable. The
methods of dynamical systems are used to show the stabilities of the reported model. Particularly, we use
the LaSalle’s invariance rule and linear stability approach. Also, we execute the model to show the graphical
representation of the analytical results for verification purposes.

2. The model

We describe the model and its formulation keeping in view the HBV characteristics to incorporate the
new parameters and classes that are not proposed in the work reported in [25]. We assume the different
groups of susceptible, chronic, acute and recovered individuals which are respectively symbolized by w(t),
y(t), x(t) and z(t). We also put the following constraints.

• The constants and epidemic variables are taken to be non-negative.
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• The different infections periods (chronic and acute) are taken.

• The different sources of transmission i.e. from acute and chronic are considered while formulating the
model.

• Since, HBV vaccine provides indefinite immunity, so the vaccination of susceptible individuals are
taken.

• The probability based disease transmission are taken. In addition, if the susceptible individuals after
successful interaction with infectious individuals leads to acute group with probability r, than the
(1− r)th portion of the susceptible individuals goes to chronic stage.

• In acute period often the immune system are able to clear the virus and get recovered, so a natural
recovery is taken with probability s, while for those who leads to the life long illnesses are taken to
the chronic period with probability (1− s).

• Newborn are taken to be susceptible, while the death occurs due to disease is taken only in the chronic
group of the model.

Thus, with the help of above constraints, we develop a mathematical model which looks like:

dw(t)

dt
= Π− αx(t)w(t)− αγ0y(t)w(t)− (ν + µ0)w(t),

dx(t)

dt
= r {αx(t)w(t) + αγ0w(t)y(t)} − {µ0 + β}x(t),

dy(t)

dt
= (1− r) {αx(t)w(t) + αγ0w(t)y(t)}+ βsx(t)− {µ0 + µ1 + γ2} y(t),

dz(t)

dt
= (1− s)βx(t) + νw(t) + γ2y(t)− µ0z(t),

(1)

with initial population sizes
x(0) ≥ 0, w(0) > 0, z(0) > 0, y(0) ≥ 0, (2)

where Π denote the totally susceptible newborn and the parameter α represent is the transmission rate of
HBV. γ0 demonstrate the reduced transmission, while ν symbolize the rate of vaccination. In addition, the
parameter µ0 represent the death rate and β is taken to be the disease recovery rate. We also assume that
µ1 is the portion of death occurred from the HBV infection and γ2 is the recovery rate of chronic population.

3. Biological and mathematical feasibility

We discuss the biological and mathematical feasibility of the considered epidemic problem. For this
purposes we have some results in the following.

Proposition 3.1. For the proposed model given by Eqn.(1) the non negatively orthant R4
+ is positively

invariant.

Proof. Let S = (w, x, y, z)T and re-writing the system (1) as

dS(t)

dt
= CS +A, (3)

C =


−R11 0 0 0
αγ0Y −R22 0 0

(1− r)(αX + αγ0Y ) sβ −R33 0
ν (1− s)β γ2 −R44

 , A =


Π
0
0
0

 , (4)
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where
R11 = αx+ αγ0y + µ0ν, R22 = µ0 + β − αγw, R33 = µ0 + µ1 + γ2, R44 = µ0. (5)

Clearly, all the elements of C are non-negative except the main diagonal entries and also satisfies Metzler
matrix properties, therefore C denote a Metzler matrix also B ≥ 0. Hence, the proposed model (3) is
positively invariant in non-negative orthant R4

+.

C = B1(0, t+)×B1(0, t+)×B1(0, t+)×B1(0, t+), t+ > 0, (6)

Define the norm on C as

4∑
i=1

‖Ψi‖ for Ψ(t) = (Ψ1(t),Ψ2(t),Ψ3(t),Ψ4(t))T ∈ S. (7)

where state space is in the form

Ω := {(w, x, y, z) ∈ C+ where 0 ≤ N ≤ 1}, (8)

where in Eqn.(8), N(t) = x(t) +w(t) + z(t) + y(t) and C+ = B1
+(0, t+)×B1

+(0, t+)×B1
+(0, t+)×B1

+(0, t+)
denotes the positive cone B1(0, t+) and (Ψ1,Ψ2,Ψ3,Ψ4) = (w, x, y, z). We consider a linear operator which
is denoted by R and given by

(RΨ)(t) = (R1, R2, R3, R4), (9)

where

R1 =

(
− dΨ1

dt
− (µ0 + ν)Ψ1, 0, 0, 0

)
,

R2 =

(
0,−dΨ2

dt
− (µ0 + β)Ψ2, 0, 0

)
,

R3 =

(
0, sβΨ2,−

dΨ3

dt
− (µ+ µ1 + γ2)ψ2, 0

)
,

R4 =

(
νΨ1, (1− s)βΨ2, γ2Ψ3,−

dΨ4

dt
− µ0Ψ4

)
,

(10)

and the domain D(R) is

D(R) = {Ψ ∈ C where, Ψi ∈MC[0, t+),Ψ(0) = (Ψi(0), fori = 1...4)}, (11)

along with Ψ1(0) = w(0),Ψ2(0) = x(0),Ψ3(0) = y(0) and Ψ4(0) = z(0). Also the function MC[0, t+) in
Eqn.(11) on [0, t+) denote absolutely continuous function. We take the nonlinear operation P : C → C by

(PΨ)(t) =


Π− αΨ1Ψ2 − αγ0Ψ1Ψ3

r(αΨ1Ψ2 + αγ0Ψ1Ψ3)
(1− r)(αΨ1Ψ2 + αγ0Ψ1Ψ3)

0

 , (12)

and u(t) = (w, x, y, z), then Eqn.(1) in the form of abstract Cauchy problem is written as

du(t)

dt
= R(u(t)) + P (u(t)), µ(0) = µ0 ∈ C, (13)

and µ0(t) = (w(0), x(0), y(0), z(0))T . To obtain the required results for R and P we follow Inaba and
Webb.

Lemma 3.2. The linear operator R generates B0 semi group eRt and w.r.t semi flow defined by eRt the
space Ω is positive invariant.

Muhammad Khan et. al., Adv. Theory Nonlinear Anal. Appl. 7 (2023), 94–106. 97



Lemma 3.3. On C The operator P is continuously differentiable.

Theorem 3.4. A unique continues mild solution µ(t, µ0) ∈ C+ exist for Eqn.(13) and a maximal interval
of existence [0, t+] for each µ0 ∈ C+ and every µ0 ∈ C0, such that

µ(t) = eRtµ0 +

∫ t

0
et−τS(µ(τ))dτ. (14)

Proposition 3.5. Let w(0) > 0, x(0) > 0, y(0) > 0 and z(0) > 0 then the solution of system (1) is positive
for every t > 0 if it is exist.

Proof. Suppose the system (1) has solution in I ⊂ [0,∞), then the solution for the first equation in system
given by (1) for ∀ t ∈ I is given by

w(t) = Πt exp

{
−
∫ t

0

(
αx(s) + αγ0y(s) + µ0ν

)
ds

}
+ C exp

{
−
∫ t

0

(
αx(s) + αγ0y(s) + µ0ν

)
ds

}
. (15)

So, w(t) > 0 for every t ∈ I. In the similar way, we can prove that x(t), y(t) and z(t) have non-negative
solution.

4. Steady states analysis

In this section, we discuss the existence of equilibrium points for proposed model as well as the existence
of backward bifurcation. We also find one of the important quantity R0 for qualitative analysis of the model
given by (1). The mathematical model given by (1) of the HBV is studied for the equilibrium points such as
endemic equilibrium states and disease free. Consider D2 represents the equilibrium point of the proposed
model, where the population is taken consider to be noninfectious. This equilibrium point refer as disease
free and for model (1) is given by D2 =

(
w0, x0, y0, z0

)
, where w0 = Π

µ0+ν , y0 = x0 = 0 and z0 = Πν
µ0(µ0+ν) .

For model (1) we find the basic reproduction number by using Driessche and Watmough method, to find
the reproduction quantity, suppose that J = (x, y)T , then the proposed system (1) implies

dX

dt

∣∣∣∣
D2

= F1 − V1, (16)

where

F1 =

[
rαw0 rαγ0w

0

(1− r)αw0 (1− r)αγ0w
0

]
, V1 =

[
µ0 + β 0
−sβ µ0 + µ1 + γ2

]
.

The spectral radius of ρ(FV −1), i.e. R0 = R1 +R2 +R3, is the required reproduction quantity, where

R1 =
(1− r)w0αγ0

q3
, R2 =

w0αr

q2
, R3 =

w0αβγ0rs

q2q3
, (17)

where q1 = ν + µ0, q2 = µ0 + β and q3 = γ2 + µ0 + µ1. For stability of the given model with regard to local
and global investigation we have the following results.

Theorem 4.1. The disease free equilibrium point D2 of the model given by (1) is stable locally, if R0 < 1
while the disease free equilibrium point D2 is unstable locally if R0 > 1.

Proof.

J0

∣∣∣∣
D2

=

 −q1 −αw0 −αγ0w
0

0 rαw0 − q2 rαγ0w
0

0 (1− r)αw0 + sβ (1− r)αγ0w
0 − q3

 .
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Clearly one eigenvalue of J is −q1 < 0 which is negative to show that remaining eigenvalues are also we take
the reduce matrix given by.

J1

∣∣∣∣
D2

=

(
rαW 0 − q2 rαγ0w

0

(1− r)αW 0 + sβ (1− r)αγ0w
0 − q3

)
.

Here we need to show that H0 := trace(J1) < 0 and det(J1) > 0, so

trace(J1) = −q2(1−R2)− q3(1−R1), (18)

and

det(J1) = q2q3

{
1−

(
(1− r)w0αγ0

q3
+
w0αr

q2
+
w0αβγ0rs

q2q3

)}
, (19)

which implies that
det(J1) = q2q3(1−R0). (20)

Noted that H0 holds, if R0 < 1, thus one can conclude that the stability D2 of the proposed system is locally
stable whenever R0 < 1.

Theorem 4.2. The DFE point D2 of the model (1) is stable globally asymptotically if R0 < 1 and unstable
whenever R0 > 1.

Proof. Let
F (t) = (w − w0) + x+ y. (21)

By using values from the model (1), the derivative of F (t) takes the form

dF (t)

dt
= Π− (ν + µ0)w − (µ1 + µ0 + γ2)− µ0x− β(1− s)x. (22)

After using the value of X0 some mathematical arrangement Eqn.(22) becomes

dF (t)

dt
= −(µ0 + ν)(w − w0)− (µ0 + µ1 + γ2)− µ0x− β(1− s)x. (23)

It is clear from Eqn.(23) that dF (t)
dt < 0 and dF (t)

dt = 0 if and only if x = x0, w = w0, y = y0, z = z0. So
according to the LaSalles invariant principle the DFE pointE0(X0, 0, 0, Z0) is stable globally asymptotically.

Suppose D3 represents the endemic equilibrium point and let x = x∗, w = w∗, y = y∗ and z = z∗ then
the endemic equilibrium becomes

w∗ =
q2q2

α(rq3 + βsγ0r + q2γ0(1− r))
,

x∗ = rq1q3

(
R0 − 1

α(rq3 + βsγ0r + q2γ0(1− r))

)
,

y∗ = q1 (q2(1− r) + rβs)

(
R0 − 1

α(rq3 + βsγ0r + q2γ0(1− r))

)
,

z∗ =
(1− s)βx∗ + νw∗ + γ2y

∗

µ0
.

(24)

Theorem 4.3. The endemic state D3 of the proposed model (1) is stable locally, if R0 > 1, while D3 is
locally unstable whenever R0 < 1.
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Proof.

J∗
∣∣∣∣
D3

=

 −αx∗ − αγ0y
∗ − q1 −αw∗ −αγ0w

∗

r(αx∗ + αγ0y
∗) rαw∗ − q2 rαγ0w

∗

(1− r)(αx∗ + αγ0y
∗) (1− r)αw∗ + sβ (1− r)αγ0w

∗ − q3

 .

Calculating the characteristic polynomial we obtain

P (λ) = λ3 + P1λ
2 + P2λ+ P3 (25)

where

P1 = q1 + q2 + q3 + x∗α+ y∗αγ0 − (1− r)w∗αr − w∗αγ0,

P2 = q1q2 + q1q3 + q2q3 + x∗αq2 + x∗αq3 + y∗αγ0q2 + y∗αγ0q3 − w∗αq1r − w∗αq3r

− (1− r)w∗αγ0q1 − (1− r)wαγ0q2 − wαβγ0rs,

P3 = q1q2q3 + x∗αq2q3 + y∗αγ0q2q3 − w∗αq − 1q3r − (1− r)w∗αγ0q1q2 − w∗αβγ0q1rs.

Roots of Eqn.(25) are negative whenever ∆3 is positive, i.e the determinant of the Hurwitz matrix of order
3 is positive, which looks like

∆3 =

 P1 1 0
P3 P2 P1

0 0 P3

 .

Thus, the result of local stability around the disease endemic state hold whenever ∆3 > 0 and R0 > 0.

Theorem 4.4. The EE point D3 of the proposed system given by (1) is globally stable, if R0 > 1 and
unstable if R0 < 1.

Proof. Let
H(t) = {(w − w∗) + (x− x∗) + (y − y∗)}2 . (26)

Taking the time dynamics of H(t) and using model (1) with some mathematical arrangement we may leads
to

dH(t)

dt
= −{(w − w∗) + (x− x∗) + (y − y∗)}2

[
(µ0 + ν)(w − w0)

+ (µ0 + µ1 + γ2) + µ0x− β(1− s)x
]
. (27)

Eqn.(27) implies that dH(t)
dt < 0 and consequently dH(t)

dt = 0 whenever x = x∗, w = w∗, y = y∗, z = z∗. So
according to LaSalles invariant principle EE point is stable globally asymptotically.

5. Numerical simulation

Here we perform the numerical simulations to realize the time-related dynamical behavior keep in
touch with the hepatitis B model given by (1). It is necessary to show the feasibility of this work and find
out that the analytical results are valid with the aid of large-scale numerical simulation. We show here the
numerical verification of the our analytical findings as carried out in the previous sections. For, this we use
numerical method i.e., 4th order Runge-Kutta technique. We use the theory of linear stability analysis and
perturb the initial sizes of the various compartments (w, x, y, z) of the considered model from the disease
free state, the solutions curves tends to the equilibrium position irrespective of its initial sizes in the long
term run as shown in Figure.1 to 4, which represents the graphical verification of the considered problem
at disease free state. Moreover the biological interpretation describe that whenever R0 is less then unity,
each curve of w will tend to its equilibrium as shown in Figure.1 which analyze that there will be always
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susceptible individuals. The dynamics of asymptomatic and symptomatic as well as recovered individuals
are given in Figure.2–4, which reveals that the solution curves of the infected compartments will tend to its
associated equilibrium position as time varies and remain stable i.e., goes to zero. However, the recovered
population will always exists as shown in Figure.4.

Again to discuss the temporal dynamics of endemic state we use the linear stability approach and perturb
the initial sizes of population form its endemic equilibrium. Clearly we observed that each trajectory of the
compartmental population approaches to its associated steady states with the passage of time as shown in
Figure.5–8. The biological interpretation reveals that whenever R0 is not less then unity, then the number
of compartmental individuals increases in the initial and reach to its endemic stage. It is very much clear
that the dynamics of susceptible population is shown in Figure.5. The dynamics of the asymptomatic,
symptomatic and recovered population at endemic states are shown in Figure.6, 7 and 8, which verify that
there will be always infected (asymptomatic and symptomatic) as well as recovered population. All these
results suggest that if R0 > 1 and applying no proper control mechanism, the disease attains its endemic
stage. So a special attention is required to keep the value of R0 less as much as possible.
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Figure 1: The concern graph represent the dynamics of (w(t)) around disease free state for various initial population sizes, and
parameters values: Π = 0.6, α = 0.0001, γ0 = 0.01, µ0 = 0.05, β = 0.1, v = 0.01, r = 0.5, s = 0.6, µ1 = 0.02

, γ2 = 0.4.

6. Conclusion

In this work we discussed the time dynamics of the hepatitis B infectious virus by using the epi-
demic model. We categorized the various infectious periods of hepatitis B with probabilistic rate of disease
transmission. We formulated the model and studied the basic properties in the form of positivity and
bounded-ness to make the epidemic problem meaningful. We also discussed the existence analysis of the
problem using the cauchy abstract problem. Moreover, calculated the basic reproductive number and per-
formed the dynamical properties of the model. Particularly, we showed the local dynamics of the model
equilibria by using the linear stability analysis while discussed the global dynamics with the help of LaSalle’s
principle. The conditions for local and global dynamics are derived in the form of threshold parameter and
then visualized graphically using the large scale numerical simulation. We discussed the detailed dynamics
of the model graphically and supported our analytical findings.
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Figure 2: The concern graph show the disease free dynamics of x(t) for various value of initial sizes and parameters values,
Π = 0.6, α = 0.0001, γ0 = 0.01, µ0 = 0.05, v = 0.01, β = 0.1, r = 0.5, s = 0.6, µ1 = 0.02

, γ2 = 0.4.
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Figure 3: The graph show the time dynamics y(t) around disease free point and various population sizes while value of epidemic
parameters are Π = 0.6, α = 0.0001, γ0 = 0.01, µ0 = 0.05, v = 0.01, r = 0.5, β = 0.1, µ1 = 0.02

, s = 0.6, γ2 = 0.4.
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Figure 4: The graph visualizes the temporal dynamics z(t) at disease free state and different initial conditions. Moreover, the
epidemic parameters values are as: Π = 0.6, α = 0.0001, γ0 = 0.01, µ0 = 0.05, v = 0.01, r = 0.5, γ2 = 0.4, β = 0.1, s = 0.6,
µ1 = 0.02.
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Figure 5: The graph visualizes the disease endemic dynamics of w(t) for different value of initial sizes and parameters values,
Π = 0.8, α = 0.00005, γ0 = 0.01, µ0 = 0.05, β = 0.001, v = 0.001, r = 0.5, s = 0.2, γ2 = 0.02, µ1 = 0.006.
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Figure 6: The graph demonstrate the dynamics x(t) around endemic point and various population sizes while value of epidemic
parameters are Π = 0.8, α = 0.00005, γ0 = 0.01, µ0 = 0.05, β = 0.001, v = 0.001, r = 0.5, s = 0.2, γ2 = 0.02, µ1 = 0.006..
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Figure 7: The graph demonstrate the temporal dynamics y(t) at endemic state and different initial conditions. Moreover, the
epidemic parameters values are as: Π = 0.8, α = 0.00005, γ0 = 0.01, µ0 = 0.05, β = 0.001, v = 0.001, r = 0.5, s = 0.2,
γ2 = 0.02, µ1 = 0.006.
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Figure 8: The graph demonstrate the temporal dynamics z(t) at endemic state and different initial conditions. Moreover, the
epidemic parameters values are as: Π = 0.8, α = 0.00005, γ0 = 0.01, µ0 = 0.05, β = 0.001, v = 0.001, r = 0.5, s = 0.2,
γ2 = 0.02, µ1 = 0.006.
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