Naas Adjimia, Maamar Benbachirb
aLaboratoire de Mathématiques et Sciences appliquées, University of Ghardaïa, Algeria.
bFaculty of Sciences, Saad Dahlab University, Blida, Algeria.
This paper investigates the following Katugampola fractional differential equation with Erdélyi–Kober fractional integral boundary conditions:
\[
\begin{cases}
D_{\rho}^{\alpha}u(t) + h(t, u(t)) = 0, & 0 < t < T,\\[6pt]
u(0) = 0, & \\[6pt]
u'(T) = \lambda I_{\eta}^{\gamma, \delta} u'(\xi), & 0 < \xi < T,
\end{cases}
\]
where $D_{\rho}^{\alpha}$ is the Katugampola derivative of order $1 < \alpha < 2$, $\rho > 0$ and
$h: [0, T] \times \mathbb{R} \to \mathbb{R}$ is a continuous function,
$I_{\eta}^{\gamma, \delta}$ denotes Erdélyi–Kober fractional integral of order $\delta > 0$, $\eta > 0$,
$\lambda, \gamma \in \mathbb{R}$.
Some new existence and uniqueness results are obtained using nonlinear’s contraction principle and Krasnoselskii’s and Leray–Schauder’s fixed point theorems.
Four examples are given in the last section to illustrate the obtained results.
Keywords: Katugampola fractional derivative; Erdélyi–Kober fractional integral; Boundary value problem; Fixed point theorem.
Adjimi, N., & Benbachır, M. (2021). Katugampola fractional differential equation with Erdelyi-Kober integral boundary conditions. Advances in the Theory of Nonlinear Analysis and its Application , 5 (2), 215-228.