Open Access

  

Original research article

Katugampola Fractional Differential Equation with Erdelyi-Kober Integral Boundary Conditions

Author(s):

Naas Adjimia, Maamar Benbachirb

aLaboratoire de Mathématiques et Sciences appliquées, University of Ghardaïa, Algeria.
bFaculty of Sciences, Saad Dahlab University, Blida, Algeria.

Advances in the Theory of Nonlinear Analysis and its Applications 5 (2), 215-228.
Received: March 30, 2020

  

  

  

Accepted: March 29, 2021

  

Published: March 31, 2021

Abstract

This paper investigates the following Katugampola fractional differential equation with Erdélyi–Kober fractional integral boundary conditions:
\[
\begin{cases}
D_{\rho}^{\alpha}u(t) + h(t, u(t)) = 0, & 0 < t < T,\\[6pt]
u(0) = 0, & \\[6pt]
u'(T) = \lambda I_{\eta}^{\gamma, \delta} u'(\xi), & 0 < \xi < T,
\end{cases}
\]
where $D_{\rho}^{\alpha}$ is the Katugampola derivative of order $1 < \alpha < 2$, $\rho > 0$ and
$h: [0, T] \times \mathbb{R} \to \mathbb{R}$ is a continuous function,
$I_{\eta}^{\gamma, \delta}$ denotes Erdélyi–Kober fractional integral of order $\delta > 0$, $\eta > 0$,
$\lambda, \gamma \in \mathbb{R}$.
Some new existence and uniqueness results are obtained using nonlinear’s contraction principle and Krasnoselskii’s and Leray–Schauder’s fixed point theorems.
Four examples are given in the last section to illustrate the obtained results.

Keywords: Katugampola fractional derivative; Erdélyi–Kober fractional integral; Boundary value problem; Fixed point theorem.

Share & Cite

APA Style

Adjimi, N., & Benbachır, M. (2021). Katugampola fractional differential equation with Erdelyi-Kober integral boundary conditions. Advances in the Theory of Nonlinear Analysis and its Application , 5 (2), 215-228.